Skip to main content
Log in

Archaeomagnetic Studies of Baked Clay Bricks in European Part of Russia: New Data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—Reconstructing the evolution of the geomagnetic field in the European part of Russia has been an extremely challenging problem due to the still limited data meeting the up-to-date quality criteria. The paper presents the results of archaeomagnetic studies for five groups of fragments of baked clay bricks from architectural monuments of the 18th to 19th centuries in the Yaroslavl region. Paleointensity of the samples was determined by the Triaxe method involving a series of continuous high-temperature measurements. The paleointensity determinations satisfying the up-to-date quality criteria are obtained from 71 samples of 19 fragments of five archaeomagnetic groups. The obtained paleointensity data are compared with the existing data for the European part of Russia and regional reference curves for Western and Eastern Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Brown, M.C., Donadini, F., Korte, M., Nilsson, A., Korhonen, K., Lodge, A., Lengyel, S.N., and Constable, C.G., GEOMAGIA50.v3: 1. General structure and modifications to the archeological and volcanic database, Earth, Planets Space, 2015, vol. 67, no. 1, pp. 1–31. https://doi.org/10.1186/s40623-015-0232-0

    Article  Google Scholar 

  2. Burakov, K.S., Method for determining the intensity of the geomagnetic field from thermal demagnetization curves I n and I rt, Mater. IX konf. po voprosam postoyannogo geomagnitnogo polya, magnetizmu gornykh porod i paleomagnetizma, chast’ 2 (Proc. IX Conf. on the Constant Geomagnetic Field, Rock Magnetism and Paleomagnetism, part 2), Baku, 1973, pp. 56–57.

  3. Burakov, K.S. and Nachasova, I.E., Historical magnetic field of Vologda and Gorky, in Sb. tezisov dokl. VIII konf. po voprosam postoyannogo geomagnitnogo polya, magnetizma gornykh porod i paleomagnetizma, chast’ 1 (Book Abstr. of the VIII Conf. on the Constant Geomagnetic Field, Rock Magnetism and Paleomagnetism, part 1), Moscow, 1970, pp. 75–78.

  4. Burakov, K.S., Nachasova, I.E., and Petrova, G.N., The geomagnetic field intensity in the Baikal region during the last millennia, Geomagn. Aeron., 2000, vol. 40, no. 2, pp. 219–223.

    Google Scholar 

  5. Burlatskaya, S.P., Nachasova, I.E., Didenko, E.Yu., and Shelestun, N.K., Arkheomagnitnye opredeleniya elementov geomagnitnogo polya (Archaemagnetic Determinations of Geomagnetic Field Elements), Moscow: VINITI, 1986.

  6. Day, R., Fuller, M., and Schmidt, V.A., Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 1977, vol. 13, no. 4, pp. 260–267. https://doi.org/10.1016/0031-9201(77)90108-x

    Article  Google Scholar 

  7. De Marco, E., Spatharas, V., Gómez-Paccard, M., Chauvin, A., and Kondopoulou, D., New archaeointensity results from archaeological sites and variation of the geomagnetic field intensity for the last 7 millennia in Greece, Phys. Chem. Earth, 2008, vol. 33, nos. 6–7, pp. 578–595.

    Article  Google Scholar 

  8. Dunlop, D., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 2. Application to data for rocks, sediments, and soils, J. Geophys. Res.: Solid Earth, 2002, vol. 107, no. B3, Paper ID 2057. https://doi.org/10.1029/2001JB000487

  9. Gallet, Y. and Le Goff, M., High-temperature archeointensity measurements from Mesopotamia, Earth Planet. Sci. Lett., 2006, vol. 241, no. 1, pp.159–173.

    Article  Google Scholar 

  10. Genevey, A., Gallet, Y., Jesset, S., Thébault, E., Bouillon, J., Lefèvre, A., and Le Goff, M., New archeointensity data from French Early Medieval ceramic production (6th–10th century AD): tracing 1500 years of geomagnetic field intensity variations in Western Europe, Phys. Earth Planet. Inter., 2016, vol. 257, pp. 205–219.

    Article  Google Scholar 

  11. Gómez-Paccard, M., Chauvin, A., Lanos, P., and Thiriot, J., New archeointensity data from Spain and the geomagnetic dipole moment in Western Europe over the past 2000 years, J. Geophys. Res.: Solid Earth, 2008, vol. 113, no. B9, Paper ID B09103. https://doi.org/10.1029/2008JB005582

  12. Kosareva, L.R., Kuzina, D.M., Nurgaliev, D.K., Sitdikov, A.G., Luneva, O.V., Khasanov, D.I., Suttie, N., and Spassov, S., Archaeomagnetic investigations in Bolgar (Tatarstan), Stud. Geophys. Geod., 2020, vol. 64, pp. 255–292. https://doi.org/10.1007/s11200-019-0493-3

    Article  Google Scholar 

  13. Kosterov, A., Kovacheva, M., Kostadinova-Avramova, M., Minaev, P., Salnaia, N., Surovitskii, L., Sergienko, E., and Kharitonskii, P., High-coercivity magnetic minerals in archaeological baked clay and bricks, Geophys. J. Int., 2021, vol. 224, no. 2, pp. 1256–1271. https://doi.org/10.1093/gji/ggaa508

    Article  Google Scholar 

  14. Kovacheva, M., Kostadinova-Avramova, M., Jordanova, N., Lanos, P., and Boyadziev, Y., Extended and revised archaeomagnetic database and secular variation curves from Bulgaria for the last eight millennia, Phys. Earth Planet. Inter., 2014, vol. 236, pp. 79–94.

    Article  Google Scholar 

  15. Latyshev, A.V., Kushlevich, D.O., Ponomareva, V.V., Pevzner, M.M., and Fedyukin, I.V., Secular variation of the geomagnetic field over the past 4000 years recorded in the lavas and pyroclastics of the Northern Group of Kamchatka volcanoes: New data, Izv. Phys. Solid Earth, 2017, vol. 53, no. 5, pp. 750–759.

    Article  Google Scholar 

  16. Le Goff, M. and Gallet, Y., A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo- and archeo-intensity determinations, Earth Planet. Sci. Lett., 2004, vol. 229, pp. 31–43.

    Article  Google Scholar 

  17. López-Sánchez, J., McIntosh, G., Osete, M.L., del Campo, A., Villalaín, J.J., Pérez, L., Kovacheva, M., and Rodríguez de la Fuente, O., Epsilon iron oxide: Origin of the high coercivity stable low Curie temperature magnetic phase found in heated archeological materials, Geochem. Geophys. Geosyst., 2017, vol. 18, no. 7, pp. 2646–2656. https://doi.org/10.1002/2017GC006929

    Article  Google Scholar 

  18. Lowrie, W., Identification of ferromagnetic minerals in a rock by coercitivity and unblocking temperature properties, Geophys. Res. Lett., 1990, vol. 17, no. 2, pp. 159–162.

    Article  Google Scholar 

  19. McIntosh, G., Kovacheva, M., Catanzariti, G., Donadini, F., and Lopez, M.L.O., High coercivity remanence in baked clay materials used in archeomagnetism, Geochem. Geophys. Geosyst., 2011, vol. 12, no. 2, Paper ID Q02003. https://doi.org/10.1029/2010GC003310

  20. Merrill, R., McElhinny, M., and McFadden, P., The Magnetic Field of the Earth: Paleomagnetism, the Core and the Deep Mantle, 2nd ed., San Diego: Academic Press, 1996.

    Google Scholar 

  21. Nachasova, I.E., Secular variations of the geomagnetic field with periods less than 200 years (according to archeomagnetic data), Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Acad. Sci. SSSR, Schmidt Inst. Phys. Earth, 1970.

  22. Nachasova, I.E., Burakov, K.S., and Pilipenko, O.V., Variations in the intensity of the geomagnetic field in Siberia during the last 13000 years, Izv. Phys. Solid Earth, 2015, vol. 51, no. 1, pp. 44–50.

    Article  Google Scholar 

  23. Nachasova, I.E., Pilipenko, O.V., and Markov, G.P., Variations of the main geomagnetic field intensity in the region of the Taman Peninsula during the last 13 centuries, Izv. Phys. Solid Earth, 2016, vol. 52, no. 6, pp. 889–895.

    Article  Google Scholar 

  24. Nachasova, I.E., Pilipenko, O.V., Markov, G.P., Gribov, S.K., and Tsetlin, Yu.B., Geomagnetic field intensity during the Neolith in the central East European Plain, Geomagn. Aeron., 2018, vol. 58, no. 3, pp. 438–447.

    Article  Google Scholar 

  25. Pilipenko, O.V., Nachasova, I.E., Gribov, S.K., and Zelentsova, O.V., Archaeomagnetic studies of the material of the archaeological monument Dmitrievskaya Sloboda II of the second millennium B.C. Recent advances in rock magnetism, environmental magnetism and paleomagnetism, Proc. Int. Conf. on Geomagnetism, Paleomagnetism and Rock Magnetism: Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism, Nurgaliev, D., Shcherbakov, V., Kosterov, A., Spassov, S., Eds., Kazan, 2017, Cham: Springer, 2019, pp. 97–107.

  26. Rossiiskii Gosudarstvennyi istoricheskii arkhiv. F. 799. Op. 33. D. 2389. Strakhovye dokumenty na tserkovnoe imushchestvo po vtoromu okrugu Mologskogo uezda Yaroslavskoi eparkhii (Russian State Historical Archives. F. 799. Op. 33. D. 2389. Insurance Documents for Church Property in the 2nd Okrug of the Mologa Uezd of the Yaroslavl Diocese).

  27. Rossiiskii Gosudarstvennyi istoricheskii arkhiv. F. 799. Op. 33. D. 2413. Strakhovye dokumenty na tserkovnoe imushchestvo po vtoromu okrugu Myshkinskogo uezda Yaroslavskoi eparkhii (Russian State Historical Archives. F. 799. Op. 33. D. 2413. Insurance Documents for Church Property in the 2nd Okrug of the Myshkin Uezd of the Yaroslavl Diocese).

  28. Rybin, K.G., Kratkie svedeniya o monastyryakh i tserkvakh Yaroslavskoi eparkhii (Brief Information about the Monasteries and Churches of the Yaroslavl Diocese), Yaroslavl: tip. Gub. zemsk. upravy, 1908.

  29. Salnaia, N., Gallet, Y., Genevey, A., and Antipov, I., New archeointensity data from Novgorod (North-Western Russia) between c. 1100 and 1700 AD. Implications for the European intensity secular variation, Phys. Earth Planet. Inter., 2017a, vol. 269, pp. 18–28.

    Article  Google Scholar 

  30. Salnaia, N.V., Gallet, Y., Genevey, A., Glazunova, O.N., and Gavryushkin, D.A., New archeointensity results on a baked-clay tiles collection from New Jerusalem Monastery, Geofiz. Issled., 2017b, vol. 18, no. 2, pp. 83–94. https://doi.org/10.21455/gr2017.2-6

    Article  Google Scholar 

  31. Shcherbakov, V.P. and Shcherbakova, V.V., On the suitability of the Thellier method of palaeointensity determinations on pseudosingledomain and multidomain grains, Geophys. J. Int., 2001, vol. 146, no. 1, pp. 20–30.

    Article  Google Scholar 

  32. Sterlina, V.V., Grafova, E.A., Chizhkov, A.B., Starodubov, Yu.V., Yaroslavskie usad’by. Katalog s kartoi raspolozheniya usadeb (Yaroslavl Estates. Catalog with a Map of the Location of Estates), Moscow: Russkaya usad’ba, 2016.

  33. Tarling, D., Palaeomagnetism: Principles and Applications in Geology, Geophysics and Archaeology, London: Chapman and Hall, 1983.

    Book  Google Scholar 

  34. Tema, E. and Kondopoulou, D., Secular variation of the Earth’s magnetic field in the Balkan region during the last eight millennia based on archaeomagnetic data, Geophys. J. Int., 2011, vol. 186, no. 2, pp. 603–614.

    Article  Google Scholar 

  35. Tema, E., Morales, J., Goguitchaichvili, A., and Camps, P., New archaeointensity data from Italy and geomagnetic field intensity variation in the Italian Peninsula, Geophys. J. Int., 2013, vol. 193, pp. 603–614.

    Article  Google Scholar 

  36. Thellier, E. and Thellier, O., Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., 1959, vol. 15, pp. 285–378.

    Google Scholar 

  37. Wilson, R.L., The thermal demagnetization of natural magnetic moments in rocks, Geophys. J. R. Astron. Soc., 1961, vol. 5, no. 1, pp. 45–58. https://doi.org/10.1111/j.1365-246X.1961.tb02928.x

    Article  Google Scholar 

  38. Zijderveld, J.D.A., A. C. Demagnetization of rocks: analysis of results, in Methods in Palaeomagnetism, Collinson, D.W., Creer, K.M., and Runcorn, S.K., Eds., Amsterdam: Elsevier, 1967, pp. 254–286.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are particularly grateful to Y. Gallet, A. Genevey, and M. Le Goff for providing the possibility to carry out the studies in the Institute de Physique du Globe de Paris, France, and their help in the interpretation of the results of paleointensity determination experiments and to P.A. Minaev and G.P. Markov for their help in compiling the archaeomagnetic collection.

Funding

The work was carried under the state research project of the Geological Institute of the Russia Academy of Sciences with partial support from the Russian Foundation for Basic Research under project no. 19-55-18006

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Salnaia or D. D. Jolshin.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salnaia, N.V., Jolshin, D.D. Archaeomagnetic Studies of Baked Clay Bricks in European Part of Russia: New Data. Izv., Phys. Solid Earth 57, 395–408 (2021). https://doi.org/10.1134/S1069351321030101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321030101

Keywords:

Navigation