Skip to main content
Log in

Damage evolution on different scale levels

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The patterns of multiple fractures in a localized zone at the notch tip of metallic specimens are studied at different stages of static and cyclic loading. Cumulative number-length distributions of microcracks in the localized zone of fracture and amplitude distribution of acoustic emission signals accompanying the development of fracture are calculated. The influence of metal structure and loading conditions on multiple fracture kinetics is considered.

The identified common kinetic features of multiple fractures in metallic specimens are used for analyzing both the localized zones of fracture in rocks and the seismic activity accompanying the formation of faults in the Earth’s crust. The basic regularities in the kinetics of damage accumulation before fracturing of a specimen are found to be similar to those in the dynamics of seismicity before an earthquake. The physical interpretation of the parameters used for earthquake prediction is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D.J., From Antimoment To Moment: Plane Strain Models of Earthquakes that Stop, Bull. Seismol. Soc. Am., 1975, vol. 65, pp. 163–182.

    Google Scholar 

  • Botvina, L.R., Kinetika razrusheniya konstruktsionnykh materialov (Kinetics of Fracturing of Structural Materials), Moscow: Nauka, 1989.

    Google Scholar 

  • Botvina, L.R. and Oparina, I.B., Regularities of Fracture Process under Different Loading Conditions, Fiz. Khim. Mekhanika Razrusheniya, 1993, no. 4, pp. 13–23.

  • Botvina, L.R., Phase Transitions in Fracture and Crystallization Processes, Dokl. Akad. Nauk, 1995, vol. 340, no. 5, pp. 617–621.

    Google Scholar 

  • Botvina, L.R., Rotwain, I.M., Keilis-Borok, V.I., and Oparina, I.B., The Guttenberg-Richter Law at Different Stages of Accumulation of Damages and Preparation of Earthquakes, Dokl. Akad. Nauk, 1995, vol. 345, pp. 809–812.

    Google Scholar 

  • Botvina, L.R., Oparina, I.B., and Novikova, O.V., Analysis of Damage Accumulation Process on Various Scale Levels, Metallovedenie i Term. Obrabotka Metallov, 1997, no. 4, pp. 13–22.

  • Botvina, L.B. and Oparina, I.B., Common Features of Fracture Process on Various Scale Levels, Int. J. Fracture, 2000, vol. 106, pp. 33–45.

    Article  Google Scholar 

  • Botvina, L.R. and Petersen, T.B., Analogy of Acoustic and Seismic Regimes at Different Stages of Fracture Process, Dokl. Akad. Nauk, 2001, vol. 376, no. 3, pp. 331–334.

    Google Scholar 

  • Botvina, L.R., Shebalin, P.N., and Oparina, I.B., Mechanism of Time Variations in Seismicity and Acoustic Emission before Macrofracture Process, Dokl. Akad. Nauk, 2001, vol. 376, no. 4, pp. 480–484.

    Google Scholar 

  • Botvina, L.R., Kinetic Similarity of Fracture Process on Various Scale Levels, Int. J. Fracture, 2004, vol. 128, pp. 133–137.

    Article  Google Scholar 

  • Botvina, L.R., Zharkova, N.A., Tyutin, M.R., Petersen, T.B., and Budueva, V.G., Kinetics of Damage Accumulation in Low-Carbon Steel under Tension, Deformatsiya i Razrushenie Materialov, 2005, no. 3, pp. 2–8.

  • Botvina, L.R., Tyutin, M.R., and Zharkova, N.A., Stages of Damage Accumulation at Tension, in Trudy konferentsii “Deformatsiya i razrushenie materialov” (Proceedings of Conference on Material Deformation and Fracture), Moscow: IMET RAN, 2006.

    Google Scholar 

  • Botvina, L.R and Tyutin, M.R, Fractal Properties of Multiple Fracture Patterns, Dokl. Earth Sci., 2007, vol. 417A, no. 7, p. 1362–1365.

    Article  Google Scholar 

  • Botvina, L.R., Razrushenie: kinetika, mekhanizmy, obshchie zakonomernosti (Fracture: Kinetics, Mechanisms, Common Regularities), Moscow: Nauka, 2008.

    Google Scholar 

  • Botvina, L.R., Petersen, T.B., and Tyutin, M.R., Estimation and Analysis of b-Value of Acoustic Emission, Zavod. Lab., Diagn. Mater., 2011, no. 3.

  • Bowman, D.D., Ouillon, G., Sammis, C.G., et al., An Observational Test of the Critical Earthquake Concept, J. Geophys. Res., 1998, vol. 103, B10, pp. 24359–24372.

    Article  Google Scholar 

  • Cartwright, J., Mansfield, C., and Trudgill, B., The Growth of Faults by Segment Linkage: Evidence from the Canyonlands Grabens of S. E. Utah, J. Struct. Geol., 1995, vol. 17, pp. 1319–1326.

    Article  Google Scholar 

  • Chester, F.M., Evans, J.P., and Biegel, R.L., Internal Structure and Weakening Mechanisms of the San Andreas Fault, J. Geophys. Res., 1993, vol. 98, no. B1, pp. 771–786.

    Article  Google Scholar 

  • Cladouhos, T.T. and Marrett, R., Are Fault Growth and Linkage Models Consistent with Power-Law Distributions of Fault Length?, J. Struct. Geol., 1996, vol. 18, nos. 2/3, pp. 281–293.

    Article  Google Scholar 

  • Cowie, P.A., Sornette, D., and Vanneste, C., Multifractal Scaling Properties of a Growing Fault Population, Geophys. J. Int., 1995, vol. 122, pp. 457–469.

    Article  Google Scholar 

  • De Joussineau, G. and Aydin, A., The Evolution of the Damage Zone with Fault Growth in Sandstone and its Multiscale Characteristics, J. Geophys. Res., 2007, vol. 112, p. B12401. doi:10.1029/2006JB004711

    Article  Google Scholar 

  • Feder, E., Fractals, New York: Plenum, 1988.

    Google Scholar 

  • Fedotov, S.A., Regularities in the Distribution of Strong Earthquakes in Kamchatka, Kuriles, and Northeastern Japan, Tr. Inst. Fiziki Zemli, Akad. Nauk SSSR, 1965, p. 66–95.

  • Golombek, M. and Rapp, D., Size-Frequency Distributions of Rocks on Mars and Earth Analog Sites: Implications for Future Landed Missions, J. Geophys. Res., 1997, M.102(E2), pp. 4117–4129.

    Article  Google Scholar 

  • Gzovskii, M.V., Osnovy tektonofiziki (Basics of Tectonophysics), Moscow: Nauka, 1975.

    Google Scholar 

  • Hirata, T., Omori’s Power Law Aftershock Sequences of Microfracture Process in Rock Fracture Experiment, J. Geophys. Res., 1987, vol. 92, no. B7, pp. 6215–6221.

    Article  Google Scholar 

  • Hirata, T., A Correlation between the b-Value and the Fractal Dimension of Earthquakes, J. Geophys. Res., 1989, vol. 94, pp. 7507–7514.

    Article  Google Scholar 

  • Kachanov, L.M., Durability at Creep, Dokl. Akad. Nauk SSSR, Otd. Tekhnicheskikh Nauk, 1958, no. 8, pp. 26–31.

  • Kanamori H. The Nature of Seismicity Patterns before Large Earthquakes, In Prediction: An International Review, Eds., Simpson D.W. and Richards, P.G., Washington, DC: AGU, 1981, Maurice Ewing Ser., vol. 4, pp. 1–19.

    Google Scholar 

  • Keilis-Borok, V.I. and Malinovskaya, L.N., One Regularity in the Occurrence of Strong Earthquakes, J. Geophys. Res., 1964, vol. 69, pp. 3019–3025.

    Article  Google Scholar 

  • Kuksenko, V.S., Model of Transition from Micro- to Macrofracturing in Solids, in Sb. dokl. I Vsesoyuz. shk. seminara “Fizika prochnosti i plastichnosti” (Proc. First All-Union Conf. Phys. Strength Plastic.), Leningrad: Nauka, 1986, p. 36–41.

    Google Scholar 

  • Mikumo, T. and Miyatake, T., Earthquake Sequences on a Frictional Fault Model with Non-Uniform Strengths and Relaxation Times, Geophys. J. R. Astr. Soc., 1979, vol. 59, pp. 497–522.

    Google Scholar 

  • Mogi, K., Study of Elastic Shocks Caused by the Fracture of Heterogeneous Materials and its Relations to Earthquake Phenomena, Bull. Earthq, Res. Inst., Tokyo Univ., 1962, vol. 40, pp. 125–173.

    Google Scholar 

  • Mogi, K., Seismic Activity and Earthquake Prediction, Proc. Earthq. Predict. Symp., Tokyo, 1977, pp. 203–214.

  • Mogi, K., Earthquake Prediction, Tokyo: Academic Press, 1985.

    Google Scholar 

  • Önsel, A.O., Main, I., Alptekin, O., and Cowie, P. Spatial Variations of the Fractal Properties of Seismicity in the Anatolian Fault Zones, Tectonophysics, 1996, vol. 257, pp. 189–202.

    Article  Google Scholar 

  • Paris, P.C. and Erdogan, F., A Critical Analysis of Crack Propagation Laws, J. Basis Eng., 1963, vol. 85, no. 4, pp. 528–534.

    Google Scholar 

  • Rabotnov, Yu.N., Mechanism of Long-Term Fracture Process, in Voprosy prochnosti materialov i konstruktsii (Issues of Strength of Materials and Constructions), Moscow: Akad. Nauk SSSR, 1959.

    Google Scholar 

  • Rikitake, T., Earthquake Precursors, Bull. Seismol. Soc. Amer., 1975, vol. 65, pp. 1133–1162.

    Google Scholar 

  • Rotwain, I.M., Keilis-Borok, V.I., and Botvina, L.R., Premonitory Transformation of Steel Fracturing and Seismicity, Phys. Earth Planet. Inter., 1997, vol. 101, pp. 61–71.

    Article  Google Scholar 

  • Rundle, J.B., Klein, W., Turcotte, D.L., and Malamud, B.D., Precursory Seismic Activation and Critical-Point Phenomena, Pure and Applied Geophysics, 2000, vol. 157, pp. 2165–2182.

    Article  Google Scholar 

  • Sadovsky, M.A., Natural Lumpiness of Rock Structure, Dokl. Akad. Nauk SSSR, 1979, no. 247, pp. 829–840.

  • Scholz, C.H., Microfractures, Aftershocks, and Seismicity, Bull. Seismol. Soc. Am., 1968, vol. 58, pp. 1117–1130.

    Google Scholar 

  • Scholz, C.H., Sykes, L.R., and Aggarwal, Y.P., Earthquake Prediction: a Physical Basis, Science, 1973, vol. 181, pp. 803–810.

    Article  Google Scholar 

  • Scholz, C.H., The Mechanics of Earthquakes and Faulting, Cambridge: Cambridge University Press, 2002.

    Google Scholar 

  • Sekiya, H., Anomalous Seismic Activity and Earthquake Prediction, J. Phys. Earth, 1977. vol. 25(Suppl.), pp. S85–S93.

    Article  Google Scholar 

  • Shebalin, P.N., Increased Correlation Range of Seismicity before Large Events Manifested by Earthquake Chains, Technophysics, 2006, vol. 424, pp. 335–349.

    Article  Google Scholar 

  • Sherman, S.I., Fizicheskie zakonomernosti razvitiya razlomov zemnoi kory (Physical Regularities in the Development of Crustal Faults), Novosibirsk: Nauka, 1977.

    Google Scholar 

  • Sobolev, G.A., Osnovy prognoza zemletryasenii (Basics of Earthquake Prediction), Moscow: Nauka, 1993.

    Google Scholar 

  • Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Physics of Earthquakes and Precursors), Moscow: Nauka, 2003.

    Google Scholar 

  • Tetyueva, T.V., Botvina, L.R., and Krupnin, S.A., Regularity of Damaging of Low-Alloy Steels in the Corrosion Active Hydrosulfide-Bearing Medium, Fiz. Khim. Mekhanika Materialov, 1990, no. 2. pp. 27–33.

  • Tomilin, N.G., Ierarkhicheskie svoistva akusticheskoi emissii pri razrushenii gornykh porod (Hierarchic Properties of Acoustic Emission at Rock Fracturing), St. Petersburg: FTI im. A.F. Ioffe RAN, 1997.

    Google Scholar 

  • Tsubokawa, I., On Relation Between Duration of Crustal Movement and Magnitude of Earthquake Expected, J. Geol. Soc. Japan, 1969, vol. 15, pp. 75–88.

    Google Scholar 

  • Vermilye, J.M. and Scholz, C.H., The Process Zone: a Microstructural View of Fault Growth, J. Geophys. Res., 1998, vol. 103, no. B6, pp. 12223–12237.

    Article  Google Scholar 

  • Voight, B., A Method for Prediction of Volcanic Eruptions, Nature, 1988, vol. 332, pp. 125–130.

    Article  Google Scholar 

  • Whitcoma, J.H., Garmany, J.D., and Anderson, D.L., Earthquake Prediction: Variation of Seismic Velocities before the San Fernando Earthquake, Science, 1973, vol. 181, pp. 632–635.

    Article  Google Scholar 

  • Wyss, M. and Habermann, R.E., Precursory Seismic Quiescence, PAGEOPH, 1998, vol. 126, nos. 2/4, p. 319–332.

    Google Scholar 

  • Zav’yalov, A.D., Srednesrochnyi prognoz zemletryasenii. Osnovy, metodika, realizatsiya (Intermediate-Term Prediction of Earthquakes: Theory, Methods, and Practice), Moscow: Nauka, 2006.

    Google Scholar 

  • Zhurkov, S.N., Kuksenko, V.S., and Slutsker, A.I., Formation of Submicroscopic Fractures in Polymers Under Loading, Fizika Tv. Tela, 1969, vol. 11, no. 1, pp. 296–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.R. Botvina, 2011, published in Fizika Zemli, 2011, No. 10, pp. 5–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botvina, L.R. Damage evolution on different scale levels. Izv., Phys. Solid Earth 47, 859–872 (2011). https://doi.org/10.1134/S106935131110003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935131110003X

Keywords

Navigation