Skip to main content
Log in

The Role of Sphingosine-1-Phosphate in Neurodegenerative Diseases

  • REVIEW ARTICLE
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid metabolite with antiapoptotic action. As a signal molecule, S1P regulates the survival of cells and their differentiation, the motility and dynamics of the cytoskeleton and is involved in the processes of cell migration, proliferation, and autophagy. The content of S1P in the cell is controlled by specific kinases and phosphatases as well as the enzyme of S1P degradation, S1P lyase. S1P fulfils most of its functions as a ligand to specific membrane G-protein-coupled receptors (S1PR1–5). S1P receptors are expressed by all cell types, including neurons and glial cells. In the central nervous system (CNS), S1P can perform protective functions and induce survival-stimulating signaling pathways or, conversely, contribute to the development of pathological processes, including neurodegenerative disorders. The functions of S1P, the expression of its receptors, and their action depend on the type of CNS cells, the stage of their development, and the state of the whole organism. Based on the action of S1P, the drug fingolimod was developed, which, by binding to S1P receptors with high affinity, diminishes the inflammatory cell infiltration, damage to tissues, and demyelination. The review highlights recent advances in the understanding of how S1P acts and its role in neurodegenerative disorders (Alzheimer’s disease, Parkinson’s disease, and lateral amyotrophic sclerosis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Jęśko, H. and Lenkiewicz, A.M.A.A., J. Expert Opin. Ther. Patents, 2016, vol. 27, pp. 427–438. https://doi.org/10.1080/13543776.2017.1261112

    Article  CAS  Google Scholar 

  2. Gavrilova, S.I., Alesenko, A.V., Kolykhalov, I.V., Fedorova, Ya.B., Selezneva, N.D., Ponomareva, E.V., Gur’yanova, S.V., Gutner, U.A., and Shupik, M.A., Psikhiatriya, 2017, vol. 73, pp. 5–15.

    Google Scholar 

  3. Nigmatullina, R.R., Zalyalova, Z.A. Kudrin, V.S., Pronina, T.S., Georgieva, S.G., Vorob’eva, N.E ., Soshnikova, N.V., Krasnov, A.N., Kuz’mina, O.I., and Ugryumov, M.V., Assessment of the peripheral manifestations of Parkinson’s disease—a new approach to the creation of preclinical diagnostics, in Neirodegenerativnye zabolevaniya ot genoma do tselostnogo organizma (Neurodegenerative Diseases from Genome to Whole Organism), Moscow: Nauchnyi mir, 2014, pp. 203–232.

  4. Grassi, S., Giussani, P., Mauri, L., Prioni, S., Sonnino, S., and Prinetti, A., Lipid Res., 2020, vol. 61, pp. 636–654. https://doi.org/10.1194/jlr.TR119000427

  5. Shamim, A., Mahmood, T., Ahsan, F., Kumar, A., and Bagga, P., Clin. Nutr. Exp., 2018, vol. 20, pp. 1–19. https://doi.org/10.1016/j.yclnex.2018.05.001

    Article  Google Scholar 

  6. Alessenko, A.V. and Albi, E., Front. Neurol., 2020, vol. 21, p. 437. https://doi.org/10.3389/fneur.2020.00437

    Article  Google Scholar 

  7. Hannun, Y.A. and Obeid, L.M., Nat. Rev. Mol. Cell Biol., 2018, vol. 19, pp. 175–191. https://doi.org/10.1038/nrm.2017.107

    Article  CAS  PubMed  Google Scholar 

  8. Merrill, A.H., Chem. Rev., 2011, vol. 111, pp. 6387–6422. https://doi.org/10.1038/nrm.2017.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iqbal, J., Walsh, M.T., Hammad, S.M., and Hussain, M.M., Trends Endocrinol. Metab., 2017, vol. 28, pp. 506–518. https://doi.org/10.1016/j.tem.2017.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alesenko, A.V. and Gavrilova, S.I., Potential role of sphingolipids as biomarkers of Alzheimer’s disease, in Neirodegenerativnye zabolevaniya ot genoma do tselostnogo organizma (Neurodegenerative Diseases from Genome to Whole Organism), Moscow: Nauchnyi mir, 2014, pp. 298–320.

  11. Pruett, S.T., Bushnev, A., Hagedorn, K., Adiga, M., Haynes, C.A., Sullards, M.C., Liotta, D.C., and Merrill, A.H., J. Lip. Res., 2008, vol. 49, pp. 1621–1639. https://doi.org/10.1194/jlr.R800012-JLR200

    Article  CAS  Google Scholar 

  12. Czubowicz, K., Jesko, H., Wencel, P., Lukiw, W.J., and Strosznajder, R.P., Mol. Neurobiol., 2019, vol. 56, pp. 5436–5455. https://doi.org/10.1007/s12035-018-1448-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pyne, S., Adams, D.R., and Pyne, N.J., in Lipid Signaling in Human Diseases. Handbook of Experimental Pharmacology, Gomez-Cambronero, J. and Frohman, M., Eds., Cham: Springer, 2020, vol. 259, pp. 49–76. https://doi.org/10.1007/164_2018_96

  14. Alesenko, A.V., Gavrilova, S.I., Gutner, U.A., Lebedeva, A.O., Shupik, M.A., Kolykhalov, I.V., Ponomareva, E.V., Selezneva, N.D., and Fedorova, Ya.B., Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2017, vol. 6, pp. 21–27. https://doi.org/10.17116/jnevro20171176121-27

    Article  Google Scholar 

  15. Hawkins, C.C., Ali, T., Ramanadham, S., and Hjelmeland, A.B., Biomolecules, 2020, vol. 23, p. 1357. https://doi.org/10.3390/biom10101357

    Article  CAS  Google Scholar 

  16. Aoki, M., Aoki, H., Ramanathan, R., Hait, N.C., and Takabe, K., Mediators Inflamm., 2016, vol. 2016, pp. 1–11. https://doi.org/10.1155/2016/8606878

    Article  CAS  Google Scholar 

  17. Ouyang, J., Shu, Z., Chen, S., Xiang, H., and Lu, H., J. Cell. Mol. Med., 2020, vol. 24, pp. 10290–10301. https://doi.org/10.1111/jcmm.15744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rohrbach, T., Maceyka, M., and Spiegel, S., Crit. Rev. Biochem. Mol. Biol., 2017, vol. 52, pp. 543–553. https://doi.org/10.1080/10409238.2017.1337706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kurano, M. and Yatomi, Y., J. Atheroscler. Thromb., 2018, vol. 25, pp. 16–26. https://doi.org/10.5551/jat.RV17010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, P., Yuan, Y., Lin, W., Zhong, H., Xu, K., and Qi, X., Cancer Cell Int., 2019, vol. 19, pp. 1–12. https://doi.org/10.1186/s12935-019-1014-8

    Article  CAS  Google Scholar 

  21. Książek, M., Chacińska, M., Chabowski, A., and Baranowski, M., J. Lip. Res., 2015, vol. 56, pp. 1271–1281. https://doi.org/10.1194/jlr.R059543

    Article  CAS  Google Scholar 

  22. Wattenberg, B.W., World J. Biol. Chem., 2010, vol. 1, pp. 362–368. https://doi.org/10.4331/wjbc.v1.i12.362

    Article  PubMed  PubMed Central  Google Scholar 

  23. Adams, D.R., Pyne, S., and Pyne, N.J., Cell Signal., 2020, vol. 76, p. 109806. https://doi.org/10.1016/j.cellsig.2020.109806

    Article  CAS  PubMed  Google Scholar 

  24. Wattenberg, B.W., Pitson, S.M., and Raben, D.M., J. Lip. Res., 2006, vol. 47, pp. 1128–1139. https://doi.org/10.1194/jlr.R600003-JLR200

    Article  CAS  Google Scholar 

  25. Pitson, S.M., D’Andrea, R.J., Vandeleur, L., Moretti, P.A.B., Xia, P., Gamble, J.R., Vadas, M.A., and Wattenberg, B., Biochem. J., 2000, vol. 350, pp. 429–441. https://doi.org/10.1042/0264-6021:3500429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siow, D. and Wattenberg, B., Crit. Rev. Biochem. Mol. Biol., 2011, vol. 46, pp. 365–375. https://doi.org/10.3109/10409238.2011.580097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harikumar, K.B., Yester, J.W., Surace, M.J., Oyeniran, C., Price, M.M., Huang, W.C., Hait, N.C., Allegood, J.C., Yamada, A., Kong, X., Lazear, H.M., Bhardwaj, R., Takabe, K., Diamond, M.S., Luo, C., Milstien, S., Spiegel, S., and Kordula, T., Nat. Immunol., 2014, vol. 15, pp. 231–238. https://doi.org/10.1038/ni.2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taniguchi, M., Kitatani, K., Kondo, T., Hashimoto-Nishimura, M., Asano, S., Hayashi, A., Mitsutake, S., Igarashi, Y., Umehara, H., Takeya, H., Kigawa, J., and Okazaki, T., J. Biol. Chem., 2012, vol. 287, pp. 39898–39910. https://doi.org/10.1074/jbc.M112.416552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, H., Toman, R.E., Goparaju, S.K., Maceyka, M., Nava, V.E., Sankala, H., Payner, S.G., Bektas, M., Ishii, I., Chun, J., Milstien, S., and Spiegel, S., J. Biol. Chem., 2003, vol. 278, pp. 40330–40336. https://doi.org/10.1074/jbc.M304455200

    Article  CAS  PubMed  Google Scholar 

  30. Mattie, M., Brooker, G., and Spiegel, S., J. Biol. Chem., 1994, vol. 269, pp. 3181–3188.

    Article  CAS  Google Scholar 

  31. Hait, N.C., Allegood, J., Maceyka, M., Strub, G.M., Harikumar, K.B., Singh, S.K., Luo, C., Marmorstein, R., Kordula, T., Milstien, S., and Spiegel, S., Science, 2009, vol. 325, pp. 1254–1257. https://doi.org/10.1126/science.1176709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xia, P., Wang, L., Moretti, P.A.B., Albanese, N., Chai, F., Pitson, S.M., D’Andrea, R.J., Gamble, J.R., and Vadas, M.A., J. Biol. Chem., 2002, vol. 277, pp. 7996–8003. https://doi.org/10.1074/jbc.M111423200

    Article  CAS  PubMed  Google Scholar 

  33. Strub, G.M., Paillard, M., Liang, J., Gomez, L., Allegood, J.C., Hait, N.C., Maceyka, M., Price, M.M., Chen, Q., Simpson, D.C., Kordula, T., Milstien, S., Lesnefsky, E.J., and Spiegel, S., FASEB J., 2011, vol. 25, pp. 600–612. https://doi.org/10.1096/fj.10-167502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hannun, Y.A. and Obeid, L.M., Nat. Rev. Mol. Cell Biol., 2008, vol. 9, pp. 139–150. https://doi.org/10.1038/nrm2329

    Article  CAS  PubMed  Google Scholar 

  35. Moruno, ManchonJ.F., Uzor, N.E., Dabaghian, Y., Furr-Stimming, E.E., Finkbeiner, S., and Tsvetkov, A.S., Sci. Rep., vol. 5, p. 15213. https://doi.org/10.1038/srep15213

  36. O’Sullivan, S. and Dev, K.K., Neuropharmacology, 2017, vol. 2017, pp. 597–607. https://doi.org/10.1016/j.neuropharm.2016.11.006

    Article  CAS  Google Scholar 

  37. Chun, J., Giovannoni, G., and Hunter, S.F., Drugs, 2021, vol. 81, pp. 207–231. https://doi.org/10.1007/s40265-020-01431-8

    Article  CAS  PubMed  Google Scholar 

  38. Hla, T., Lee, M.J., Ancellin, N., Paik, J.H., and Kluk, M.J., Science, 2001, vol. 294, pp. 1875–1878. https://doi.org/10.1126/science.1065323

    Article  CAS  PubMed  Google Scholar 

  39. Lewis, N.D., Haxhinasto, S.A., Anderson, S.M., Stefanopoulos, D.E., Fogal, S.E., Adusumalli, P., Desai, S.N., Patnaude, L.A., Lukas, S.M., Ryan, K.R., Slavin, A.J., Brown, M.L., and Modis, L.K., J. Immunol., 2013, vol. 190, pp. 3533–3540. https://doi.org/10.4049/jimmunol.1201810

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, W., An, J., Jawadi, H., Siow, D.L., Lee, J.F., Zhao, J., Gartung, A., Maddipati, K.R., Honn, K.V., Wattenberg, B.W., and Lee, M.J., Prostaglandins Other Lipid Mediat., 2013, vol. 106, pp. 62–71. https://doi.org/10.1016/j.prostaglandins.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  41. Couttas, T.A., Kain, N., Daniels, B., Lim, X.Y., Shepherd, C., Kril, J., Pickford, R., Li, H., Garner, B., and Don, A.S., Acta Neuropathol. Commun., 2014, vol. 2, p. 9. https://doi.org/10.1186/2051-5960-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  42. Czubowicz, K., Cieslik, M., Pyszko, J., Strosznajder, J.B., and Strosznajder, R.P., Mol. Neurobiol., 2015, vol. 51, pp. 1300–1308. https://doi.org/10.1007/s12035-018-1448-3

    Article  CAS  PubMed  Google Scholar 

  43. Malaplate-Armand, C., Florent-Bechard, S., Youssef, I., Koziel, V., Sponne, I., Kriem, B., Leininger-Muller, B., Olivier, J.L., Oster, T., and Pillot, T., Neurobiol. Dis., vol. 23, no. is. 2006, pp. 178–189. https://doi.org/10.1016/j.nbd.2006.02.010

  44. Czubowicz, K. and Strosznajder, R., Mol. Neurobiol., 2014, vol. 50, pp. 26–37. https://doi.org/10.1007/s12035-013-8606-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Brocklyn, J.R. and Williams, J.B., Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2012, vol. 163, pp. 26–36. https://doi.org/10.1016/j.cbpb.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  46. Pitson, S.M., Moretti, P.A.B., Zebol, J.R., Lynn, H.E., Xia, P., Vadas, M.A., and Wattenberg, B.W., EMBO J., 2003, vol. 22, pp. 5491–5500. https://doi.org/10.1093/emboj/cdg540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giguere, F.S.C., Essis, S.A., Chagniel, L., Germain, M., Cyr, M., and Massiccotte, G., Brain Res., 2017, vol. 1658, pp. 51–59. https://doi.org/10.1016/j.brainres.2017.01.014

    Article  CAS  Google Scholar 

  48. Safarian, F., Khallaghi, B., Ahmadiani, A., and Dargahi, L., J. Mol. Neurosci., 2015, vol. 56, pp. 177–187. https://doi.org/10.1007/s12031-014-0478-1

    Article  CAS  PubMed  Google Scholar 

  49. Hsu, C.K., Lee, I.T., Lin, C.C., Hsiao, L.D., and Yang, C.M., J. Cell Physiol., 2015, vol. 230, pp. 702–715. https://doi.org/10.1002/jcp.24795

    Article  CAS  PubMed  Google Scholar 

  50. Alvarez, S.E., Harikumar, K.B., Hait, N.C., Allegood, J., Strub, G.M., Kim, E.Y., Maceyka, M., Jiang, H., Luo, C., Kordula, T., Milstien, S., and Spiegel, S., Nature, 2010, vol. 465, pp. 1084–1088. https://doi.org/10.1038/nature09128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Okamoto, H., Takuwa, N., Yokomizo, T., Sugimoto, N., Sakurada, S., Shigematsu, H., and Takuwa, Y., Mol. Cell. Biol., 2000, vol. 20, pp. 9247–9261. https://doi.org/10.1128/mcb.20.24.9247-9261.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jaillard, C., Harrison, S., Stankoff, B., Aigrot, M.S., Calver, A.R., Duddy, G., Walsh, F.S., Pangalos, M.N., Arimura, N., Kaibuchi, K., Zalc, B., and Lubetzki, C., J. Neurosci., 2005, vol. 25, pp. 1459–1469. https://doi.org/10.1523/JNEUROSCI.4645-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Olsen, A.S.B. and Færgeman, N.J., Open Biol., 2017, vol. 7, p. 170069. https://doi.org/10.1098/rsob.170069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paugh, B.S., Bryan, L., Paugh, S.W., Wilczynska, K.M., Alvarez, S.M., Singh, S., Kapitonov, D., Rokita, H., Wright, S., Griswold-Prenner, I., Milstien, S., Spiegel, S., and Kordula, T., J. Biol. Chem., 2009, vol. 284, pp. 3408–3417. https://doi.org/10.1074/jbc.M807170200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sorensen, S.D., Nicole, O., Peavy, R.D., Montoya, L.M., Lee, C.J., Murphy, T.J., Traynelis, S.F., and Hepler, J.R., Mol. Pharmacol., 2003, vol. 64, pp. 1199–1209. https://doi.org/10.1124/mol.64.5.1199

    Article  CAS  PubMed  Google Scholar 

  56. Wu, Y.P., Mizugishi, K., Bektas, M., Sandhoff, R., and Proia, R.L., Hum. Mol. Genet., 2008, vol. 17, pp. 2257–2264. https://doi.org/10.1093/hmg/ddn126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Groves, A., Kihara, Y., and Chun, J., J. Neurol. Sci., 2013, vol. 328, pp. 9–18. https://doi.org/10.1016/j.jns.2013.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi, J.W., Gardell, S.E., Herr, D.R., Rivera, R., Lee, C.W., Noguchi, K., Teo, S.T., Yung, Y.C., Lu, M., Kennedy, G., and Chun, J., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 751–756. https://doi.org/10.1073/pnas.1014154108

    Article  PubMed  Google Scholar 

  59. Fischer, I., Alliod, C., Martinier, N., Newcombe, J., Brana, C., and Pouly, S., PLoS One, 2011, vol. 6. e23905. https://doi.org/10.1371/journal.pone.0023905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao, Z. and Tsirka, S.E., Neurol. Res. Int., 2011, vol. 2011, p. 383087. https://doi.org/10.1155/2011/383087

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tham, C.S., Lin, F.F., Rao, T.S., Yu, N., and Webb, M., Int. J. Dev. Neurosci., 2003, vol. 21, pp. 431–443. https://doi.org/10.1016/j.ijdevneu.2003.09.003

    Article  CAS  PubMed  Google Scholar 

  62. Nayak, D., Huo, Y., Kwang, W.X.T., Pushparaj, P.N., Kumar, S.D., Ling, E.A., and Dheen, S.T., Neuroscience, 2010, vol. 166, pp. 132–144. https://doi.org/10.1016/j.neuroscience.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  63. Lv, M., Zhang, D., Dai, D., Zhang, W., and Zhang, L., Inflamm. Res., 2016, vol. 65, pp. 551–562. https://doi.org/10.1007/s00011-016-0939-9

    Article  CAS  PubMed  Google Scholar 

  64. Jung, C.G., Kim, H.J., Miron, V.E., Cook, S., Kennedy, T.E., Foster, C.A., Antel, J.P., and Soliven, B., Glia, 2007, vol. 55, pp. 1656–1667. https://doi.org/10.1002/glia.20576

    Article  CAS  PubMed  Google Scholar 

  65. Novgorodov, A.S., El-Alwani, M., Bielawski, J., Obeid, L.M., and Gudz, T.I., FASEB J., 2007, vol. 21, pp. 1503–1514. https://doi.org/10.1096/fj.06-7420com

    Article  CAS  PubMed  Google Scholar 

  66. Qin, J., Berdyshev, E., Goya, J., Natarajan, V., and Dawson, G., J. Biol. Chem., 2010, vol. 285, pp. 14134–14143. https://doi.org/10.1074/jbc.M109.076810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu, D., Liu, Z., Wang, S., Peng, Y., and Sun, X., Biochem. Biophys. Res. Commun., 2017, vol. 490, pp. 670–675.

    Article  CAS  Google Scholar 

  68. Mizugishi, K., Yamashita, T., Olivera, A., Miller, G.F., Spiegel, S., and Proia, R.L., Mol. Cell. Biol., 2005, vol. 25, pp. 11113–11121. https://doi.org/10.1128/mcb.25.24.11113-11121.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kajimoto, T., Okada, T., Yu, H., Goparaju, S.K., Jahangeer, S., and Nakamura, S.-I., Mol. Cell. Biol., 2007, vol. 27, pp. 3429–3440. https://doi.org/10.1128/mcb.01465-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kono, M., Belyantseva, I.A., Skoura, A., Frolenkov, G.I., Starost, M.F., Dreier, J.L., Lidington, D., Bolz, S.S., Friedman, T.B., Hla, T., and Proia, R.L., J. Biol. Chem., 2007, vol. 282, pp. 10690–10696. https://doi.org/10.1074/jbc.M700370200

    Article  CAS  PubMed  Google Scholar 

  71. Callihan, P., Alqinyah, M., and Hooks, S.B., Methods Mol. Biol., 2018, vol. 1697, pp. 141–151. https://doi.org/10.1007/7651_2017_3

    Article  CAS  PubMed  Google Scholar 

  72. Quarta, S., Camprubi-Robles, M., Schweigreiter, R., Matusica, D., Haberberger, R.V., Proia, R.L., Bandtlow, C.E., Ferrer-Montiel, A., and Kress, M., Front. Mol. Neurosci., 2017, vol. 10, p. 317. https://doi.org/10.3389/fnmol.2017.00317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, Y.H., Vasko, M.R., and Nicol, G.D., J. Physiol., 2006, vol. 575, pp. 101–113. https://doi.org/10.1113/jphysiol.2006.111575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Di Menna, L., Molinaro, G., Di Nuzzo, L., Riozzi, B., Zappulla, C., Pozzilli, C., Turrini, R., Caraci, F., Copani, A., Battaglia, G., Nicoletti, F., and Bruno, V., Pharmacol. Res., 2013, vol. 67, pp. 1–9. https://doi.org/10.1016/j.phrs.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  75. Hagen, N., Van Veldhoven, P.P., Proia, R.L., Park, H., Merrill, A.H., and Van Echten-Deckert, G., J. Biol. Chem., 2009, vol. 284, pp. 11346–11353. https://doi.org/10.1074/jbc.M807336200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kempf, A., Tews, B., Arzt, M.E., Weinmann, O., Obermair, F.J., Pernet, V., Zagrebelsky, M., Delekate, A., Iobbi, C., Zemmar, A., Ristic, Z., Gullo, M., Spies, P., Dodd, D.M., Gygax, D., Korte, M., and Schwab, M.E., PLoS Biol., 2014, vol. 12, e1001763. https://doi.org/10.1371/journal.pbio.1001763

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cantalupo, A., Zhang, Y., Kothiya, M., Galvani, S., Obinata, H., Bucci, M., Giordano, F.J., Jiang, X.C., Hla, T., and Di Lorenzo, A., Nat. Med., 2015, vol. 21, pp. 1028–1037. https://doi.org/10.1038/nm.3934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Selvam, S.P., Roth, B.M., Nganga, R., Kim, J., Cooley, M.A., Helke, K., Smith, C.D., and Ogretmen, B., J. Biol. Chem., 2018, vol. 293, pp. 9784–9800. https://doi.org/10.1074/jbc.RA118.003506

    Article  CAS  Google Scholar 

  79. Huwiler, A., Kotelevets, N., Xin, C., Pastukhov, O., Pfeilschifter, J., and Zangemeister-Wittke, U., Br. J. Pharmacol., 2011, vol. 162, pp. 532–543. https://doi.org/10.1111/j.1476-5381.2010.01053.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Van Brocklyn, J.R., Lee, M.J., Menzeleev, R., Olivera, A., Edsall, L., Cuvillier, O., Thomas, D.M., Coopman, P.J.P., Thangada, S., Liu, C.H., Hla, T., and Spiegel, S., J. Cell Biol., 1998, vol. 142, pp. 229–240. https://doi.org/10.1083/jcb.142.1.229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mitroi, D.N., Deutschmann, A.U., Raucamp, M., Karunakaran, I., Glebov, K., Hans, M., Walter, J., Saba, J., Graler, M., Ehninger, D., Sopova, E., Shupliakov, O., Swandulla, D., and Van Echten-Deckert, G., Sci. Rep., vol. 6, p. 37064. https://doi.org/10.1038/srep37064

  82. Soliven, B., Miron, V., and Chun, J., Neurology, 2011, vol. 76, pp. 9–14. https://doi.org/10.1212/WNL.0b013e31820d9507

    Article  CAS  Google Scholar 

  83. Seyedsadr, M.S., Weinmann, O., Amorim, A., Ineichen, B.V., Egger, M., Mirnajafi-Zadeh, J., Becher, B., Javan, M., and Schwab, M.E., Neurobiol. Dis., 2019, vol. 124, pp. 189–201. https://doi.org/10.1016/j.nbd.2018.11.018

    Article  CAS  PubMed  Google Scholar 

  84. Kanno, T., Nishizaki, T., Proia, R.L., Kajimoto, T., Jahangeer, S., Okada, T., and Nakamura, S., Neuroscience, 2010, vol. 171, pp. 973–980. https://doi.org/10.1016/j.neuroscience.2010.10.021

    Article  CAS  PubMed  Google Scholar 

  85. Jové, M., Naudí, A., Gambini, J., Borras, C., Cabré, R., Portero-Otín, M., Viña, J., and Pamplona, R., J. Gerontol., 2017, vol. 72, pp. 30–37. https://doi.org/10.1093/gerona/glw048

    Article  CAS  Google Scholar 

  86. Marfe, G., Di Stefano, C., Gambacurta, A., Ottone, T., Martini, V., Abruzzese, E., Mologni, L., Sinibaldi-Salimei, P., de Fabritis, P., Gambacorti-Passerini, C., Amadori, S., and Birge, R.B., Exp. Hematol., 2011, vol. 39, pp. 653–665. https://doi.org/10.1016/j.exphem.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  87. Ugryumov, M.V., Translational, personalized, and preventive medicine as a basis for the fight against neurodegenerative diseases, in Neirodegenerativnye zabolevaniya ot genoma do tselostnogo organizma (Neurodegenerative Diseases from Genome to Whole Organism), Moscow: Nauchnyi mir, 2014, pp. 22–44.

  88. Gutner, U.A., Shupik, M.A., Maloshitskaya, O.A., Sokolov, S.A., Rezvykh, A.P., Funikov, A.Yu., Lebedev, A.T., Ustyugov, A.A., and Alessenko, A.V., Biochemistry, 2019, vol. 84, pp. 1166–1176. https://doi.org/10.1134/S0006297919100055

    Article  CAS  PubMed  Google Scholar 

  89. Shelkovnikova, T.A., Kulikova, A.A., Tsvetkov, F.O., Peters, O., Bachurin, S.O., Bukhman, V.L., and Ninkina, N.N., Mol. Biol., 2012, vol. 46, pp. 402–415.

    Article  CAS  Google Scholar 

  90. Grimm, M.O.W., Michaelson, D.M., and Hartmann, T., J. Lipid Res., 2017, vol. 58, pp. 2083–2101. https://doi.org/10.1194/jlr.R076331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ceccom, J., Loukh, N., Lauwers-Cances, V., Touriol, C., Nicaise, Y., Gentil, C., Uro-Coste, E., Pitson, S., Maurage, C.A., Duyckaerts, C., Cuvillier, O., and Delisle, M.B., Acta Neuropathol. Commun., 2014, vol. 2, p. 12. https://doi.org/10.1186/2051-5960-2-12

    Article  PubMed  PubMed Central  Google Scholar 

  92. Moloney, A.M., Griffin, R.J., Timmons, S., O’Connor, R., Ravid, R., and O’Neill, C., Neurobiol. Aging, 2010, vol. 31, pp. 224–243. https://doi.org/10.1016/j.neurobiolaging.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  93. Hagen, N., Hans, M., Hartmann, D., Swandulla, D., and Van Echten-Deckert, G., Cell Death Differ., 2011, vol. 18, pp. 1356–1365. https://doi.org/10.1038/cdd.2011.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Takasugi, N., Sasaki, T., Suzuki, K., Osawa, S., Isshiki, H., Hori, Y., Shimada, N., Higo, T., Yokoshima, S., Fukuyama, T., Lee, V.M.Y., Trojanowski, J.Q., Tomita, T., and Iwatsubo, T., J. Neurosci., 2011, vol. 31, pp. 6850–6857. https://doi.org/10.1523/JNEUROSCI.6467-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Karaca, I., Tamboli, I.Y., Glebov, K., Richter, J., Fell, L.H., Grimm, M.O., Haupenthal, V.J., Hartmann, T., Graler, M.H., Van Echten-Deckert, G., and Walter, J., J. Biol. Chem., 2014, vol. 289, pp. 16761–16772. https://doi.org/10.1074/jbc.M113.535500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Van Echten-Deckert, G., Hagen-Euteneuer, N., Karaca, I., and Walter, J., Cell. Physiol. Biochem., 2014, vol. 34, pp. 148–157. https://doi.org/10.1159/000362991

    Article  CAS  PubMed  Google Scholar 

  97. Pépin, É., Jalinier, T., Lemieux, G.L., Massicotte, G., and Cyr, M., Front. Pharmacol., 2020, vol. 21, p. 77. https://doi.org/10.3389/fphar.2020.00077

    Article  CAS  Google Scholar 

  98. Pyszko, J. and Strosznajder, J.B., Mol. Neurobiol., 2014, vol. 50, pp. 38–48. https://doi.org/10.1007/s12035-013-8622-4

    Article  CAS  PubMed  Google Scholar 

  99. Sivasubramanian, M., Kanagaraj, N., Dheen, S.T., and Tay, S.S.W., Neuroscience, 2015, vol. 260, pp. 636–648. https://doi.org/10.1016/j.neuroscience.2015.01.032

    Article  CAS  Google Scholar 

  100. Gómez-López, S., Martínez-Silva, A.V., Montiel, T., Osorio-Gómez, D., Bermúdez-Rattoni, F., Massieu, L., and Escalante-Alcalde, D., Sci. Rep., vol. 6, p. 24028. https://doi.org/10.1038/srep24028

  101. Pyszko, J.A. and Strosznajder, J.B., Folia Neuropathol., 2014, vol. 52, pp. 260–269. https://doi.org/10.5114/fn.2014.45567

    Article  PubMed  Google Scholar 

  102. Lwin, A., Orvisky, E., Goker-Alpan, O., LaMarca, M.E., and Sidransky, E., Mol. Genet. Metab., 2004, vol. 81, pp. 70–73. https://doi.org/10.1016/j.ymgme.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  103. Ren, M., Han, M., Wei, X., Guo, Y., Shi, H., Zhang, X., Perez, R.G., and Lou, H., Neurochem. Res., 2017, vol. 42, pp. 686–696.

    Article  CAS  Google Scholar 

  104. Zhao, P., Yang, X., Yang, L., Li, M., Wood, K., Liu, Q., and Zhu, X., FASEB J., 2017, vol. 31, pp. 172–179.

    Article  CAS  Google Scholar 

  105. Mohamed, BadawyS.M., Okada, T., Kajimoto, T., Hirase, M., Matovelo, S.A., Nakamura, S., Yoshida, D., Ijuin, T., and Nakamura, S., J. Biol. Chem., 2018, vol. 293, pp. 8208–8216. https://doi.org/10.1074/jbc.RA118.001986

    Article  Google Scholar 

  106. Dodge, J.C., Treleaven, C.M., Pacheco, J., Cooper, S., Bao, C., Abraham, M., Cromwell, M., Sardi, S.P., Chuang, W.L., Sidman, R.L., Cheng, S.H., and Shihabuddin, L.S., Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 8100–8105. https://doi.org/10.1073/pnas.1508767112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Henriques, A., Croixmarie, V., Priestman, D.A., Rosenbohm, A., Dirrig-Grosch, S., D’Ambra, E., Huebecker, M., Hussain, G., Boursier-Neyret, C., Echaniz-Laguna, A., Ludolph, A.C., Platt, F.M., Walther, B., Spedding, M., Loeffler, J.P., and De Aguilar, J.L.G., Hum. Mol. Genet., 2015, vol. 24, pp. 7390–7405. https://doi.org/10.1093/hmg/ddv439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gutner, U.A., Shupik, M.A., Maloshitskaya, O.A., Sokolov, S.A., Rezvykh, A.P., Funikov, S.Yu., Lebedev, A.T., Ustyugov, A.A., and Alessenko, A.V., Biochemistry, 2019, vol. 84, pp. 1166–1176. https://doi.org/10.1134/S0320972519100063

    Article  CAS  PubMed  Google Scholar 

  109. Li, Y.J., Shi, S.X., Liu, Q., Shi, F.D., and Gonzales, R.J., Neurosci. Lett., 2020, vol. 14, p. 135160. https://doi.org/10.1016/j.neulet.2020.135160

    Article  CAS  Google Scholar 

  110. Billich, A., Bornancin, F., Devay, P., Mechtcheriakova, D., Urtz, N., and Baumruker, T.P., J. Biol. Chem., 2003, vol. 278, pp. 47408–47415. https://doi.org/10.1074/jbc.M307687200

    Article  CAS  PubMed  Google Scholar 

  111. Komnig, D., Dagli, T.C., Toruntay, C., Habib, P., Zeyen, T., Schulz, J.B., and Falkenburger, B.H., J. Neurochem., 2018, vol. 147, pp. 678–691. https://doi.org/10.1111/jnc.14575

    Article  CAS  PubMed  Google Scholar 

  112. Potenza, R.L., De Simone, R., Armida, M., Mazziotti, V., Pezzola, A., and Popoli, P., Neurotherapeutics, 2016, vol. 13, pp. 918–927. https://doi.org/10.1007/s13311-016-0462-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Berry, J.D., Paganoni, S., Atassi, N., Macklin, E.A., Goyal, N., Rivner, M., Simpson, E., Appel, S., Grasso, D.L., Mejia, N.I., Mateen, F., Gill, A., Vieira, F., Tassinari, V., and Perrin, S., Muscle Nerve, 2017, vol. 56, pp. 1077–1084. https://doi.org/10.1002/mus.25733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hughes, R., Dalakas, M.C., Merkies, I., Latov, N., Léger, J.M., Nobile-Orazio, E., Sobue, G., Genge, A., Cornblath, D., Merschhemke, M., Ervin, C.M., Agoropoulou, C., Hartung, H.P., and FORCIDP Trial Investigators, Lancet Neurol., 2018, vol. 17, pp. 689–698. https://doi.org/10.1016/S1474-4422(18)30202-3

    Article  CAS  PubMed  Google Scholar 

  115. Tran, C., Heng, B., Teo, J.D., Humphrey, S.J., Qi, Y., Couttas, T.A., Stefen, H., Brettle, M., Fath, T., Guillemin, G.J., and Don, A.S., J. Neurochem., 2019, vol. 11, p. 14917. https://doi.org/10.1111/jnc.14917

    Article  CAS  Google Scholar 

  116. Joly, S., Dalkara, D., and Pernet, V., Neural Plast., 2017, vol. 2017, p. 6818970. https://doi.org/10.1155/2017/6818970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mitroi, D.N., Karunakaran, I., Graler, M., Saba, J.D., Ehninger, D., and Ledesma, M.D., Autophagy, 2017, vol. 13, pp. 885–899. https://doi.org/10.1080/15548627.2017.1291471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Voitova, A.A., Dmitrieva, M.D., Dymova, M.A., Vasileva, N.S., Nushtaeva, A.A., Richter, V.A., and Kuligina, E.V., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 783–792. https://doi.org/10.1134/S1068162019060384

    Article  CAS  Google Scholar 

  119. Torkhovskaya, T.I., Zakharova, T.S., Korotkevich, E.I., Ipatova, O.M., and Markin, S.S., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 335–346. https://doi.org/10.1134/S106816201905011X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. A.V. Alesenko for advices they received when writing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Gutner.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The paper does not contain any studies involving human or animal participants, performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Translated by S. Sidorova

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral; sclerosis; PD, Parkinson’s disease; NDD, neurodegenerative diseases; S1P, sphingosine-1-phosphate; S1PR, sphingosine-1-phosphate receptor; SK, sphingosine kinase; SM, sphingomyelin; Аβ, β-amyloid peptide; АРР, amyloid precursor protein; PLC, phospholipase С; SOD, superoxide dismutase.

Corresponding author: phone: +7 (495) 939-71-59.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutner, U.A., Shupik, M.A. The Role of Sphingosine-1-Phosphate in Neurodegenerative Diseases. Russ J Bioorg Chem 47, 1155–1171 (2021). https://doi.org/10.1134/S1068162021050277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021050277

Keywords:

Navigation