Skip to main content
Log in

Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The formation of a spatial relief reproducing that of the anode as a result of the thermal poling of glasses and glass-metal nanocomposites in a strong electric field has been studied by atomic force microscopy. The anode surface patterns exhibited either a square grid or a rectangular grating with a depth of 120 nm, a strip width of 0.5 μm, and a period of 1 μm manufactured using electron-beam lithography and ion etching on the surface of an n-type single crystal silicon wafer. The relief depth formed on the surface of poled samples varied within 5–15 nm, depending on the experimental conditions. The mechanism of relief formation in this system is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. A. Myers, N. Mukherjee, and S. R. Brueck, Opt. Lett. 16, 1732 (1991).

    Article  ADS  Google Scholar 

  2. M. Qiu, F. Pi, G. Orriols, and M. Bibiche. J. Opt. Soc. Am. 15, 1362 (1998).

    Article  ADS  Google Scholar 

  3. F. C. Garsia, I. C. S. Caralho, E. Hering, W. Margulis, and B. Lesche. Appl. Phys. Lett. 72, 3252 (1998).

    Article  ADS  Google Scholar 

  4. R. C. De Vekey and A. J. Majumdar, Nature 225, 172 (1970).

    Article  ADS  Google Scholar 

  5. H. An and S. Fleming. J. Opt. Soc. Am. B 23, 2303 (2006).

    Article  ADS  Google Scholar 

  6. C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire, Jr., and C. A. Achete, J. Non-Cryst. Solids 159, 204 (1993).

    Article  ADS  Google Scholar 

  7. T. Izava and H. Nakagome, Appl. Phys. Lett. 21, 584 (1972).

    Article  ADS  Google Scholar 

  8. W. Margulis and F. Laurell, Appl. Phys. Lett. 71, 2418 (1997).

    Article  ADS  Google Scholar 

  9. R. V. Ramaswamy and R. Srivastava, J. Lightwave Technol. 6, 984 (1988).

    Article  ADS  Google Scholar 

  10. H. Takagi, Shin-ichi Miyazava, M. Takahashi, and R. Maeda, Appl. Phys. Express 1, 024003 (2008).

  11. T. Kaneko, J. Mater. Sci. Lett. 5, 1011 (1986).

    Article  Google Scholar 

  12. K. Tsusumi, H. Hirai, and Y. Yuba, Electron. Lett. 22, 1299 (1986).

    Article  Google Scholar 

  13. A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, Appl. Opt. 30, 674 (1991).

    Article  ADS  Google Scholar 

  14. N. Valles, N. Villarreal, A. Villalobos, and H. Marquez. J. Lightwave Technol. 17, 606 (1999).

    Article  ADS  Google Scholar 

  15. R. Oven, J. Appl. Phys. 100, 053513 (2006).

    Google Scholar 

  16. O. Deparis, P. G. Kazansky, A. Abdolvand, et al., Appl. Phys. Lett. 85, 872 (2004).

    Article  ADS  Google Scholar 

  17. A. A. Lipovskii, V. G. Melehin, and V. D. Petrikov, Pis’ma Zh. Tekh. Fiz. 32(6), 89 (2006) [Tech. Phys. Lett. 32, 275 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Melekhin.

Additional information

Original Russian Text © P.N. Brunkov, V.G. Melekhin, V.V. Goncharov, A.A. Lipovskii, M.I. Petrov, 2008, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 34, No. 23, pp. 73–79.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunkov, P.N., Melekhin, V.G., Goncharov, V.V. et al. Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites. Tech. Phys. Lett. 34, 1030–1033 (2008). https://doi.org/10.1134/S1063785008120122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785008120122

PACS numbers

Navigation