Skip to main content
Log in

Investigation of a single barrier discharge in submillimeter air gaps. Nonuniform field

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Pulse characteristics of single barrier discharges as well as parameters of charges accumulated on the surface of a dielectric under the atmospheric pressure in the “needle-(0.1–2.0)-mm air gap-polymer barrier-plane” system are investigated. It is found experimentally that for the positive polarity of the needle, the voltage for the discharge initiation is higher than in the case of the negative polarity by ∼25–35%. The reversal of the needle polarity from negative to positive increases the amplitude of the discharge current and the accumulated surface charge by ∼1.5–3 times. For the positive polarity of the needle, the discharge is governed by a streamer mechanism, while for the negative polarity, the discharge is initiated by the formation of a single Trichel pulse. The single pulse regime is observed for the discharge current up to a certain electrode gap d CR. For the positive needle and for air gap width d air > d CR ≈ 1.5 mm, a multipulse burst corona is formed, while for the negative needle and d air > d CR ≈ 0.9 mm, a damped sequence of Trichel pulses evolves in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ritz, Arch. Electrotech. 26, 219 (1932).

    Article  Google Scholar 

  2. J. B. Peace, Proc. R. Soc. London 52(315–320), 99 (1892).

    Article  Google Scholar 

  3. A. Klemm, Arch. Electrotech. 12, 553 (1923).

    Article  Google Scholar 

  4. T. Umemura, S. Nakamura, M. Hikita, T. Maeda, and M. Higashiyama, IEEE Trans. Dielectr. Electr. Insul. 20, 255 (2013).

    Article  Google Scholar 

  5. P. N. Bondarenko, O. A. Emel’yanov, and M. V. Shemet, Tech. Phys. 59, 838 (2014).

    Article  Google Scholar 

  6. R. Strigel, Arch. Electrotech. 27, 377 (1933).

    Article  Google Scholar 

  7. G. F. Leal Ferreira, O. N. Oliveira, and J. A. Giacometti, J. Appl. Phys. 59, 3045 (1986).

    Article  ADS  Google Scholar 

  8. R. Tirumala, Y. Li, D. A. Pohlman, and D. B. Go, J. Electrost. 69, 36 (2011).

    Article  Google Scholar 

  9. G. E. Georghiou, R. Morrow, and A. C. Metaxas, J. Phys. D: Appl. Phys. 32, 1370 (1999).

    Article  ADS  Google Scholar 

  10. T. Asokan and T. C. Balachandra, IEEE Trans. Dielectr. Electr. Insul. 18, 1864 (2011).

    Article  Google Scholar 

  11. U. Kogelschatz, J. Phys.: Conf. Ser. 257, 012015 (2010).

    ADS  Google Scholar 

  12. Yu. K. Bobrov, N. G. Gusein-zade, A. A. Rukhadze, and Yu. V. Yurgelenas, Physical Models and Mechanisms of Electrical Breakdown of Gases (MGU, Moscow, 2012).

    Google Scholar 

  13. Y. Murooka, T. Takada, and K. Hidaka, IEEE Electr. Insul. Mag. (USA) 17, 6 (2001).

    Article  Google Scholar 

  14. T. N. Tran, I. O. Golosnoy, P. L. Lewin, and G. E. Georghiou, J. Phys. D: Appl. Phys. 44, 015203 (2011).

    Article  ADS  Google Scholar 

  15. Yu. S. Akishev, A. V. Dem’yanov, V. B. Karal’nik, A. E. Monich, and N. I. Trushkin, Plasma Phys. Rep. 29, 82 (2003).

    Article  ADS  Google Scholar 

  16. A. Kumada, S. Okabe, and K. Hidaka, J. Phys. D: Appl. Phys. 42, 095209 (2009).

    Article  ADS  Google Scholar 

  17. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Izd. Dom Intellekt, Dolgoprudnyi, 2009).

    Book  Google Scholar 

  18. I. M. Bortnik, I. P. Vereshchagin, and Yu. N. Vershinin, Electrophysical Foundations of High Voltage Techniques (Energoatomizdat, Moscow, 1993).

    Google Scholar 

  19. L. B. Loeb, Fundamental Processes of Electrical Discharges in Gases (Wiley, New York, 1939).

    Google Scholar 

  20. V. Nikonov, R. Bartnikas, and M. R. Wertheimer, IEEE Trans. Plasma Sci. 29, 866 (2001).

    Article  ADS  Google Scholar 

  21. E. D. Lozanskii and O. B. Firsov, Theory of Spark (Atomizdat, Moscow, 1975).

    Google Scholar 

  22. G. A. Shneerson, Fiz. Plazmy 11, 1428 (1985).

    Google Scholar 

  23. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (Mosk. Fiz. Tekh. Inst., Moscow, 1997).

    Google Scholar 

  24. J. Hui, Zh. Guan, L. Wang, and Q. Li, IEEE Trans. Dielectr. Electr. Insul. 15, 382 (2008).

    Article  Google Scholar 

  25. A. Luque, V. Ratushnaya, and U. Ebert, J. Phys. D: Appl. Phys. 41, 234005 (2008).

    Article  ADS  Google Scholar 

  26. L. Papageorghiou, E. Panousis, J. F. Loiseau, N. Spyrou, and B. Held, J. Phys. D: Appl. Phys. 42, 105201 (2009).

    Article  ADS  Google Scholar 

  27. K. Kozlov, H.-E. Wagner, R. Brandenburg, and P. Michel, J. Phys. D: Appl. Phys. 34, 3164 (2001).

    Article  ADS  Google Scholar 

  28. Y. Yurgelenas and H.-E. Wagner, J. Phys. D: Appl. Phys. 39, 4031 (2006).

    Article  Google Scholar 

  29. V. Gibalov and G. Pietsch, J. Phys. D: Appl. Phys. 33, 2618 (2000).

    Article  ADS  Google Scholar 

  30. V. I. Gibalov and G. J. Pietsch, Plasma Sources Sci. Technol. 21, 024010 (2012).

    Article  ADS  Google Scholar 

  31. G. N. Aleksandrov, Zh. Tekh. Fiz. 33, 223 (1963).

    Google Scholar 

  32. R. Morrow, Phys. Rev. A 32, 1799 (1985).

    Article  ADS  Google Scholar 

  33. A. P. Napartovich, Yu. S. Akishev, A. A. Deryugin, I. V. Kochetov, M. V. Pan’kin, and N. I. Trushkin, J. Phys. D: Appl. Phys. 30, 2726 (1997).

    Article  ADS  Google Scholar 

  34. M. Cernak, T. Hosokawa, S. Kobayashi, and T. Kaneda, J. Appl. Phys. 83, 5678 (1998).

    Article  ADS  Google Scholar 

  35. P. Sattari, C. F. Gallo, G. S. P. Castle, and K. Adamiak, J. Phys. D: Appl. Phys. 44, 155502 (2011).

    Article  ADS  Google Scholar 

  36. J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases (Clarendon, Oxford, 1953).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Emel’yanov.

Additional information

Original Russian Text © P.N. Bondarenko, O.A. Emel’yanov, M.V. Shemet, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 8, pp. 21–29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, P.N., Emel’yanov, O.A. & Shemet, M.V. Investigation of a single barrier discharge in submillimeter air gaps. Nonuniform field. Tech. Phys. 59, 1127–1135 (2014). https://doi.org/10.1134/S1063784214080064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214080064

Keywords

Navigation