Skip to main content
Log in

Mechanisms behind spheroidal oscillations and electrostatic instability of a charged drop

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Mechanisms behind the oscillations of a charged spheroidal drop deformed at the zero time and the sequence of oscillation modes are investigated. It is shown that two modes adjacent to those governing the initial deformation are also excited on either side due to interaction between the spheroidal deformation and oscillation modes. If the charge of the drop is so close to a value critical for electrostatic instability that the finite-amplitude virtual initial deformation makes the fundamental mode unstable, its amplitude, as well as the amplitude of the nearest neighbor coupled to the fundamental mode through deformation, starts to exponentially grow with time. If the charge is equal to, or slightly exceeds the critical value, the amplitudes of the fundamental mode and all modes deformation-coupled with it lose stability almost simultaneously. This qualitatively changes the conditions under which the charged drop becomes unstable against the self-charge. The superposition of higher oscillation modes at the vertices of the spheroidal drop generates dynamic (i.e., time-oscillating) hillocks emitting an excessive charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Grigor’ev and S. O. Shiryaeva, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 3 (1994).

  2. A. I. Grigor’ev, S. O. Shiryaeva, A. N. Zharov, and V. A. Koromyslov, Elektrokhim. Obrab. Met., No. 3, 25 (2005).

  3. A. I. Grigor’ev, S. O. Shiryaeva, A. N. Zharov, and V. A. Koromyslov, Elektrokhim. Obrab. Met., No. 4, 24 (2005).

  4. S. O. Shiryaeva and A. I. Grigor’ev, Charged Drop in Storm Cloud (YarGU im. P.G. Demidova, Yaroslavl’, 2008) [in Russian].

    Google Scholar 

  5. J. W. Strutt (Lord Rayleigh), Phil. Mag. 14, 184 (1882).

    Google Scholar 

  6. A. I. Grigor’ev, Zh. Tekh. Fiz. 55, 1272 (1985) [Sov. Phys. Tech. Phys. 30, 755 (1985)].

    Google Scholar 

  7. A. I. Grigor’ev, A. N. Zharov, and S. O. Shiryaeva, Zh. Tekh. Fiz. 75(8), 44 (2005) [Tech. Pnys. 50, 1006 (2005)].

    Google Scholar 

  8. S. O. Shiryaeva, Zh. Tekh. Fiz. 76(3), 93 (2006) [Tech. Pnys. 51, 385 (2006)].

    Google Scholar 

  9. S. O. Shiryaeva, A. I. Grigor’ev, and P. V. Moksheev, Zh. Tekh. Fiz. 78(3), 11 (2008) [Tech. Pnys. 53, 236 (2008)].

    Google Scholar 

  10. S. O. Shiryaeva, Zh. Tekh. Fiz. 79(6), 33 (2009) [Tech. Pnys. 54, 795 (2009)].

    Google Scholar 

  11. S. I. Shchukin and A. I. Grigor’ev, Zh. Tekh. Fiz. 68(11), 48 (1998) [Tech. Pnys. 43, 1314 (1998)].

    Google Scholar 

  12. S. O. Shiryaeva, Zh. Tekh. Fiz. 76(6), 44 (2006) [Tech. Pnys. 51, 721 (2006)].

    Google Scholar 

  13. Ya. A. Frenkel’, Zh. Eksp. Teor. Fiz. 6, 348 (1936).

    Google Scholar 

  14. S. O. Shiryaeva, D. O. Kornienko, and M. V. Volkova, Elektrokhim. Obrab. Met., No. 4, 20 (2009).

  15. S. O. Shiryaeva, A. I. Grigor’ev, and I. D. Grigor’eva, Zh. Tekh. Fiz. 65(9), 39 (1995) [Tech. Pnys. 40, 885 (1995)].

    Google Scholar 

  16. S. O. Shiryaeva, Pis’ma Zh. Tekh. Fiz. 26(4), 5 (2000) [Tech. Phys. Lett. 26, 137 (2000)].

    Google Scholar 

  17. A. I. Grigor’ev and S. O. Shiryaeva, Zh. Tekh. Fiz. 61(3), 19 (1991) [Sov. Phys. Tech. Phys. 36, 258 (1991)].

    Google Scholar 

  18. D. Duft, H. Lebius, B. A. Huber, et al., Phys. Rev. Lett. 89(8), 1 (2002).

    Article  Google Scholar 

  19. D. Duft, T. Achtzehn, R. Muller, et al., Nature 421, 128 (2003).

    Article  ADS  Google Scholar 

  20. A. I. Grigor’ev and O. A. Sinkevich, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 10 (1985).

  21. A. I. Grigor’ev, Zh. Tekh. Fiz. 56, 538 (1986) [Sov. Phys. Tech. Phys. 31, 324 (1986)].

    Google Scholar 

  22. A. I. Grigor’ev and S. O. Shiryaeva, Inzh.-Fiz. Zh. 61, 632 (1991).

    Google Scholar 

  23. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Sci., Singapore, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Shiryaeva.

Additional information

Original Russian Text © S.O. Shiryaeva, A.I. Grigor’ev, D.O. Kornienko, 2010, published in Zhurnal Tekhnicheskoĭ Fiziki, 2010, Vol. 80, No. 11, pp. 11–20.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiryaeva, S.O., Grigor’ev, A.I. & Kornienko, D.O. Mechanisms behind spheroidal oscillations and electrostatic instability of a charged drop. Tech. Phys. 55, 1558–1568 (2010). https://doi.org/10.1134/S1063784210110034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784210110034

Keywords

Navigation