Skip to main content
Log in

X-ray spectroscopic examination of thin HfO2 films ALD- and MOCVD-grown on the Si(100) surface

  • Surface, Electron and Ion Emission
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

HfO2 films 5 nm thick grown on Si(100) substrates by the methods of MOCVD hydride epitaxy and atomic layer deposition (ALD) are studied using X-ray photoelectron spectroscopy combined with Ar+ ion etching and X-ray reflectometry. It is found that (i) the ALD-grown HfO2 films are amorphous, while the MOCVD-grown films show signs of a crystal structure; (ii) the surface of the ALD-grown films is more prone to contamination and/or is more reactive; and (iii) the amount of interfacial silicon dioxide in the case of the MOCVD-grown film is greater than in the case of the films synthesized by ALD. It is also shown that the argon ion etching of the HfO2 film results in the formation of a metallic hafnium layer at the interface. This indicates that HfO2 can be used not only as a gate dielectric but also as a material suitable for fabricating nanodimensional conductors by direct decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Giustino, A. Bongiorno, and A. Pasquarello, J. Phys.: Condens. Matter. 17, S2065 (2005).

    Article  ADS  Google Scholar 

  2. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  ADS  Google Scholar 

  3. A. I. Kingon, J.-P. Maria, and S. K. Streiffer, Nature 406, 1032 (2000).

    Article  Google Scholar 

  4. C. T. Hsu, Y. J. Lin, Y. K. Su, and M. Yokoyama, J. Appl. Phys. 72, 4655 (1992).

    Article  ADS  Google Scholar 

  5. J. Robertson, Rep. Prog. Phys. 69, 327 (2006).

    Article  ADS  Google Scholar 

  6. C. Adelmann, V. Sriramkumar, S. Van Elshocht, P. Lehnen, T. Conard, and S. De Gendt, Appl. Phys. Lett. 91, 162902 (2007).

    Article  ADS  Google Scholar 

  7. N. Shi and R. Ramprasad, Appl. Phys. Lett. 91, 242906 (2007).

    Article  ADS  Google Scholar 

  8. M. Houssa, High-k Gate Dielectrics (Institute of Physics, Bristol, 2004), p. 597.

    Book  Google Scholar 

  9. M. Houssa, L. Pantisano, L. A. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, and M. M. Heyns, Mater. Sci. Eng., R. 51(4), 37 (2006).

    Article  Google Scholar 

  10. S. Sayan and E. Garfunkela, Appl Phys. Lett. 80, 2135 (2002).

    Article  ADS  Google Scholar 

  11. K. Kobayashi, M. Yavashi, Y. Takata, T. Tokushima, S. Shin, K. Tamasaku, D. Miwa, and T. Ishikava, Appl. Phys. Lett. 83, 1005 (2003).

    Article  ADS  Google Scholar 

  12. M.-H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, Appl. Phys. Lett. 81, 472 (2002).

    Article  ADS  Google Scholar 

  13. Y. Hoshino, K. Yamamoto, S. Hayashi, and M. Niwa, Appl. Phys. Lett. 81, 2650 (2002).

    Article  ADS  Google Scholar 

  14. Y. G. Fedorenko, L. Truong, V. V. Afanas’ev, and A. Stesmans, Appl. Phys. Lett. 84, 4771 (2004).

    Article  ADS  Google Scholar 

  15. J.-C. Lee, S.-J. Oh, M. Cho, C. S. Hwang, and R. Jung, Appl. Phys. Lett. 84, 1305 (2004).

    Article  ADS  Google Scholar 

  16. O. Renault, D. Samour, J.-F. Damlencourt, D. Blin, F. Martin, S. Marthon, N. T. Barrett, and P. Besson, Appl. Phys. Lett. 81, 3627 (2002).

    Article  ADS  Google Scholar 

  17. P. D. Kirsch, C. S. Kang, and J. Lozano, J. Appl. Phys. 91, 4353 (2002).

    Article  ADS  Google Scholar 

  18. L. Xie, Y. Zhao and M. H. White, Solid-State Electron. 48, 2971 (2004).

    Article  Google Scholar 

  19. R. M. C. De Almeida and I. J. R. Baumvol, Surf. Sci. Rep. 49, 1 (2003).

    Article  ADS  Google Scholar 

  20. O. Ranault, D. Samour, D. Rouchon, Ph. Holliger, A.-M. Papon, and S. Marthon, Thin Solid Films 428, 190 (2003).

    Article  ADS  Google Scholar 

  21. S. Ferrari, M. Modreanu, G. Scarel, and M. Fanciulli, Thin Solid Films 450, 124 (2004).

    Article  ADS  Google Scholar 

  22. K. Nakajima, S. Joumori, M. Suzuki, K. Kimura, T. Osipowicz, L. Tok, J. Z. Zheng, A. See, and B. C. Zhang, Appl. Surf. Sci. 237, 416 (2004).

    Article  ADS  Google Scholar 

  23. N. Miyata, Appl. Phys. Lett. 89, 102903 (2006).

    Article  ADS  Google Scholar 

  24. D. G. Schlom and J. H. Haeni, MRS Bulletin. 27, 198 (2002).

    Google Scholar 

  25. B. K. Park, J. Park, M. Cho, C. S. Hwan, K. Oh, Y. Han, and D. Y. Yang, Appl. Phys. Lett. 80, 2368 (2002).

    Article  ADS  Google Scholar 

  26. P. F. Lee, J. Y. Dai, H. L. W. Chan, and C. L. Choy, Ceram. Int. 30, 1267 (2004).

    Article  Google Scholar 

  27. G. He, L. D. Zhang, and Q. Fang, J. Appl. Phys. 100, 083517 (2006).

    Article  ADS  Google Scholar 

  28. L. Zhang, S.-Y. Terauchi, R. Tan, Y. Azuma, and T. Fujimoto, J. Phys.: Conf. Series 83, 012033 (2007).

    Article  ADS  Google Scholar 

  29. D.-Y. Cho, S.-J. Oh, Y. J. Chang, T. W. Noh, R. Jung, and J.-C. Lee, Appl. Phys. Lett. 88, 193502 (2006).

    Article  ADS  Google Scholar 

  30. A. De Siervo, C. R. Flüchter, D. Weier, M. Sch└mann, S. Dreiner, C. Westphal, M. F. Carazzolle, A. Pancotti, R. Landers, and G. G. Kleiman, Phys. Rev. B 74, 075319 (2006).

    Article  ADS  Google Scholar 

  31. A. B. Mukhopadhyay, C. B. Musgrave, and J. F. Sanz, Catal. Today 128, 230 (2007).

    Article  Google Scholar 

  32. M. Leskela and M. Ritala, Thin Solid Films 409, 138 (2002).

    Article  ADS  Google Scholar 

  33. A. C. Jones, J. Mater. Chem. 12, 2576 (2002).

    Article  Google Scholar 

  34. A. G. Thompson, Mater. Lett. 30, 255 (1997).

    Article  Google Scholar 

  35. E. O. Filatova, A. A. Sokolov, I. V. Kozhevnikov, E. Yu. Taracheva, O. S. Grunsky, F. Schaefers, and W. Braun, J. Phys.: Condens. Matter. 21, 185012 (2009).

    Article  ADS  Google Scholar 

  36. K. Ramani, C. R. Essary, V. Craciaun, and R. K. Singh, Appl. Surf. Sci. 253, 6493 (2007).

    Article  ADS  Google Scholar 

  37. N. Ohtsu, B. Tsuchiya, K. Oku, T. Shikama, and K. Wagatsuma, Appl. Surf. Sci. 253, 6844 (2007).

    Article  ADS  Google Scholar 

  38. J. C. Fuggle and N. Martensson, J. Electron Spectrosc. Related Phenom. 21, 275 (1980).

    Article  Google Scholar 

  39. J. B. Park, W. S. Lim, B. J. Park, I. H. Park, Y. W. Kim, and G. Y. Yeom, J. Phys. D: Appl. Phys. 42, 055202 (2009).

    Article  ADS  Google Scholar 

  40. S. J. Chang, W. C. Lee, J. Hwang, M. Hong, and J. Kwo, Thin Solid Films 516, 948 (2008).

    Article  ADS  Google Scholar 

  41. S. M. A. Durrani, M. F. Al-Kuhaili, and E. E. Khawaja, J. Phys.: Condens. Matter, 15, 8123 (2003).

    Article  ADS  Google Scholar 

  42. A. A. Sokolov, E. O. Filatova, V. V. Afanas’ev, E. Yu. Taracheva, M. M. Brzhezinskaya, and A. A. Ovchinnikov, J. Phys. D: Appl. Phys. 42, 035308 (2009).

    Article  ADS  Google Scholar 

  43. W. Zhang, S. Zhang, Y. Liu, and T. Chen, J. Cryst. Growth 311, 1296 (2009).

    Article  ADS  Google Scholar 

  44. N. Miyata, T. Nabatame, T. Horikawa, M. Ichikawa, and A. Toriumi, Appl. Phys. Lett. 82, 472 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Filatova.

Additional information

Original Russian Text © A.A. Sokolov, A.A. Ovchinnikov, K.M. Lysenkov, D.E. Marchenko, E.O. Filatova, 2010, published in Zhurnal Tekhnicheskoĭ Fiziki, 2010, Vol. 80, No. 7, pp. 131–136.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, A.A., Ovchinnikov, A.A., Lysenkov, K.M. et al. X-ray spectroscopic examination of thin HfO2 films ALD- and MOCVD-grown on the Si(100) surface. Tech. Phys. 55, 1045–1050 (2010). https://doi.org/10.1134/S1063784210070200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784210070200

Keywords

Navigation