Skip to main content
Log in

Photonic properties of two-dimensional high-contrast periodic structures: Numerical calculations

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The photon properties of two-dimensional periodic structures formed by infinite homogeneous dielectric cylinders packed in a square lattice have been investigated theoretically. Depending on the dielectric contrast between the cylinders and the surrounding medium, the photonic band structure, transmission spectra of crystals with a finite number of layers, and spectra of Mie scattering by an isolated cylinder have been calculated. The calculations have been performed for the TE polarization. The transformation of photonic stop-bands corresponding to Bragg and Mie resonances has been analyzed using the obtained data. The main effect consists in “castling” energy positions of the Bragg stop-bands and Mie stop-bands. For low-contrast photonic crystals, the low-frequency region of the energy spectrum is determined by Bragg stop-bands, and Mie stop-bands are located higher in energy. With an increase in the dielectric contrast, the energy of Mie stop-bands decreases, and they intersect the region of Bragg stop-bands weakly varying in the TE polarization and form the low-energy region of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Optical Properties of Photonic Structures: Interplay of Order and Disorder, Ed. by M. F. Limonov and R. M. De La Rue (CRC Press, Boca Raton, Florida, United States, 2012).

    Google Scholar 

  2. S. O’Brien and J. B. Pendry, J. Phys.: Condens. Matter 14, 4035 (2002).

    ADS  Google Scholar 

  3. K. Vynck, D. Felbacq, E. Centeno, A Cǎbuz, D. Cassagne, and B. Guizal, Phys. Rev. Lett. 102, 133 901 (2009).

    Article  Google Scholar 

  4. E. Kallos, I. Chremmos, and V. Yannopapas, Phys. Rev. B: Condens. Matter 86, 245108 (2012).

    Article  ADS  Google Scholar 

  5. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, Mater. Today 12, 60 (2009).

    Article  Google Scholar 

  6. E. A. Semouchkina, G. B. Semouchkin, M. Lanagan, and C. A. Randall, IEEE Trans. Microwave Theory Tech. 53, 1477 (2005).

    Article  ADS  Google Scholar 

  7. M. Iwasaki, E. A. Semouchkina, G. B. Semouchkin, K. Z. Rajab, C. A. Randall, and M. T. Lanagan, Jpn. J. Appl. Phys. 45, 2835 (2006).

    Article  ADS  Google Scholar 

  8. E. Semouchkina, Metamaterials: Classes, Properties and Applications (Nova Science, New York, 2010), pp. 137–164.

    Google Scholar 

  9. E. Semouchkina, Metamaterial (InTech, Rijeka, Croatia, 2012), pp. 91–112.

    Google Scholar 

  10. F. Chen, X. Wang, and E. Semouchkina, Microwave Opt. Technol. Lett. 54, 555 (2012).

    Article  Google Scholar 

  11. A. Hosseinzadeh and E. Semouchkina, Microwave Opt. Technol. Lett. 55, 134 (2013).

    Article  Google Scholar 

  12. V. M. Shalaev and A. K. Sarychev, Electrodynamics of Metamaterials (World Scientific, Singapore, 2007).

    MATH  Google Scholar 

  13. V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Y. A. Vlasov, Nuovo Cimento Soc. Ital. Fis., D 17, 1349 (1995).

    Article  ADS  Google Scholar 

  14. S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 63, 056603 (2001).

    Article  ADS  Google Scholar 

  15. A. V. Baryshev, A. V. Ankudinov, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyat, Phys. Solid State 44(9), 1648 (2002).

    Article  ADS  Google Scholar 

  16. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, and A. P. Skvortsov, Phys. Solid State 46(7), 1331 (2004).

    Article  ADS  Google Scholar 

  17. E. Palacios-Lidón, B. H. Juárez, E. Castillo-Martinez, and C. López, J. Appl. Phys. 97, 63502 (2005).

    Article  Google Scholar 

  18. M. V. Rybin, A. V. Baryshev, M. Inoue, A. A. Kaplyanskii, V. A. Kosobukin, V. F. Limonov, A. K. Samusev, and A. V. Sel’kin, Photonics Nanostruct.: Fundam. Appl. 4, 146 (2006).

    Article  ADS  Google Scholar 

  19. M. V. Rybin, K. B. Samusev, and M. F. Limonov, Photonics Nanostruct.: Fundam. Appl. 5, 119 (2007).

    Article  ADS  Google Scholar 

  20. M. V. Rybin, K. B. Samusev, and M. F. Limonov, Phys. Solid State 49(12), 2280 (2007).

    Article  ADS  Google Scholar 

  21. M. V. Rybin, A. V. Baryshev, A. B. Khanikaev, M. Inoue, K. B. Samusev, A. V. Sel’kin, G. Yushin, and M. F. Limonov, Phys. Rev. B: Condens. Matter 77, 205106 (2008).

    Article  ADS  Google Scholar 

  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).

    Book  Google Scholar 

  23. M. F. Limonov, Y. E. Kitaev, A. V. Chugreev, V. P. Smirnov, Y. S. Grushko, S. G. Kolesnik, and S. N. Kolesnik, Phys. Rev. B: Condens. Matter 57, 7586 (1998).

    Article  ADS  Google Scholar 

  24. P. Tronc, Y. Kitaev, G. Wang, M. Limonov, A. Panfilov, and G. Neu, Phys. Status Solidi B 216, 599 (1999).

    Article  ADS  Google Scholar 

  25. Y. E. Kitaev, M. F. Limonov, A. G. Panfilov, R. A. Evarestov, and A. P. Mirgorodsky, Phys. Rev. B: Condens. Matter 49, 9933 (1994).

    Article  ADS  Google Scholar 

  26. J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, New Jersey, United States, 2008).

    Google Scholar 

  27. J. A. Stratton, Electromagnetic Theory (Wiley, New York, 2007).

    Google Scholar 

  28. A. V. Moroz, M. F. Limonov, M. V. Rybin, and K. B. Samusev, Phys. Solid State 53(6), 1105 (2011).

    Article  ADS  Google Scholar 

  29. I. I. Shishkin, K. B. Samusev, M. V. Rybin, M. F. Limonov, Yu. S. Kivshar’, A. Gaidukeviichute, R. V. Kiyan, and B. N. Chichkov, JETP Lett. 95(9), 457 (2012).

    Article  ADS  Google Scholar 

  30. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).

    Article  ADS  Google Scholar 

  31. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, Phys. Rev. B: Condens. Matter 48, 8434 (1993).

    Article  ADS  Google Scholar 

  32. D. S. Watkins, Fundamentals of Matrix Computations, 3rd ed. (Wiley, New York, 2010).

    MATH  Google Scholar 

  33. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Rybin.

Additional information

Original Russian Text © M.V. Rybin, I.S. Sinev, K.B. Samusev, A. Hosseinzadeh, G.B. Semouchkin, E.A. Semouchkina, M.F. Limonov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 3, pp. 567–572.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybin, M.V., Sinev, I.S., Samusev, K.B. et al. Photonic properties of two-dimensional high-contrast periodic structures: Numerical calculations. Phys. Solid State 56, 588–593 (2014). https://doi.org/10.1134/S1063783414030275

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414030275

Keywords

Navigation