Skip to main content
Log in

Photoelectric, nonlinear optical, and photorefractive properties of polymer composites including carbon nanotubes and cyanine dyes

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of cyanine dye additives on the photoelectric, nonlinear optical, and photorefractive properties of polyvinyl carbazole composites based on closed single-walled carbon nanotubes has been investigated. It has been found that these characteristics are affected by the dye in which the lowest unoccupied molecular orbital (LUMO) lies below the level of the photoexcited nanotube. The addition of this dye to the composite leads to a 14-fold increase in the quantum efficiency of the generation of mobile charge carriers under irradiation by a laser (1064 nm) in the absorption region of the nanotubes. Moreover, the addition of the dye to the composite decreases the third-order susceptibility χ(3), presumably, due to the opposite orientations of dipoles of the dye and the nanotube upon adsorption of the dye on the nanotube. The addition of the dye to the composite also provides a twofold increase in the two-beam photorefractive amplification factor of the laser beam with a wavelength of 1064 nm. The obtained values of the two-beam photorefractive amplification factor reach 120 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Kusyk, Phys. Rev. Lett. 85, 1218 (2000).

    Article  ADS  Google Scholar 

  2. Yu. V. Pleskov and Yu. Ya. Gurevich, Semiconductor Photoelectrochemistry (Consultants Bureau, New York, 1986).

    Book  Google Scholar 

  3. A. Gnoli, L. Razzari, and M. Righini, Opt. Express 13, 7976 (2005).

    Article  ADS  Google Scholar 

  4. A. Mozumder, J. Chem. Phys. 60, 4300 (1974).

    Article  ADS  Google Scholar 

  5. A. B. Dalton, J. N. Coleman, M.in het Panhuis, B. McCarthy, A. Drury, W. J. Blau, B. Paci, J.-M. Nunzi, and H. J. Byrne, J. Photochem. Photobiol., A 144, 31 (2001).

    Article  Google Scholar 

  6. A. R. Tameev, L. Ya. Pereshivko, and A. V. Vannikov, Polym. Sci., Ser. A 51(2), 182 (2009).

    Article  Google Scholar 

  7. A. Du Pasquier, H. E. Unalan, A. Kanwal, S. Miller, and M. Chhowalla, Appl. Phys. Lett. 87, 203 511 (2005).

    Article  Google Scholar 

  8. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).

    Article  ADS  Google Scholar 

  9. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vannikov.

Additional information

Original Russian Text © A.V. Vannikov, A.D. Grishina, A.S. Laryushkin, T.V. Krivenko, V.V. Savel’ev, R.W. Rychwalski, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 3, pp. 519–526.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vannikov, A.V., Grishina, A.D., Laryushkin, A.S. et al. Photoelectric, nonlinear optical, and photorefractive properties of polymer composites including carbon nanotubes and cyanine dyes. Phys. Solid State 55, 572–580 (2013). https://doi.org/10.1134/S106378341303030X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341303030X

Keywords

Navigation