Skip to main content
Log in

Optical properties of detonation nanodiamond hydrosols

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Studies of the optical properties of hydrosols of 4-nm detonation nanodiamond particles performed in the 0.2–1.1 μm range have revealed a novel effect, a strong increase of absorption at the edges of the spectral range, and provided its explanation in terms of absorption of radiation by the dimer chains (the so-called Pandey chains) fixed on the surface of a nanodiamond particle. The effect of particle size distribution in a hydrosol on the relative intensity of Rayleigh scattering and light absorption by nanodiamond particles in this range has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Shenderova and D. M. Gruen, in Ultrananocrystalline Diamond: Synthesis, Properties and Applications, Ed. by W. Andrew (Norwich, New York, 2006.)

    Google Scholar 

  2. A. Ya. Vul’, A. E. Aleksenskii, and A. T. Dideikin, in Nanoscience and Nanotechnologies: Encyclopedia of Life Support Systems (Magistr-press, Moscow, 2009) [in Russian].

    Google Scholar 

  3. Nanodiamonds: Applications in Biology and Nanoscale Medicine, Ed. by D. Ho (Springer, New York, 2010).

    Google Scholar 

  4. N. Mohan, Chao-Sheng Chen, Hsiao-Han Hsieh, Yi-Chun Wu, and Huan-Cheng Chang, Nano Lett. 10, 3692 (2010).

    Article  ADS  Google Scholar 

  5. R. Martin, M. Alvaro, J. R. Herance, and H. Garcia, ACS Nano 4(1), 65 (2010).

    Article  Google Scholar 

  6. Y. Liang, T. Meinhardt, G. Jarre, M. Ozawa, P. Vrdoljak, A. Schöll, F. Reinert, and A. Krueger, J. Colloid Interface Sci. 354, 23 (2011).

    Article  Google Scholar 

  7. O. Shenderova, S. Hens, and G. McGuire, Diamond Relat. Mater. 9, 260 (2011).

    Google Scholar 

  8. O. A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, and C. E. Nebel, ACS Nano 4(8), 4824 (2010).

    Article  Google Scholar 

  9. A. E. Aleksenskiy, E. D. Eydelman, and A. Ya. Vul’, Nanosci. Nanotechnol. Lett. 3, 68 (2011).

    Article  Google Scholar 

  10. E. Osawa, Pure Appl. Chem. 80, 1365 (2008).

    Article  Google Scholar 

  11. A. Ya. Vul’, E. D. Eidelman, L. V. Sharonova, A. E. Aleksenkiy, and S. V. Konyakhin, Diamond Relat. Mater. 20, 279 (2011).

    Article  ADS  Google Scholar 

  12. B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

    Google Scholar 

  13. E. D. Eidelman, V. I. Siklitsky, L. V. Sharonova, M. A. Yagovkina, A. Ya. Vul’, M. Takahashi, M. Inakuma, M. Ozawa, and E. Õsawa, Diamond Relat. Mater. 14, 1765 (2005).

    Article  ADS  Google Scholar 

  14. A. Ya. Vul’, E. D. Eydelman, M. Inakuma, and E. Õsawa, Diamond Relat. Mater. 16, 2023 (2007).

    Article  ADS  Google Scholar 

  15. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  16. A. E. Aleksenskii, A. Ya. Vul’, and M. A. Yagovkina, RF Patent No. 2 322 389 (April 20, 2008).

  17. A. E. Aleksenskii, M. V. Baidakova, A. I. Veinger, A. Ya. Vul’, S. P. Vul’, and M. A. Yagovkina, RF Patent No. 2 388 688 (May 10, 2010).

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Butterworth-Heinemann, Oxford, 2000; Fizmatlit, Moscow, 2003).

    Google Scholar 

  19. A. M. Panich, A. I. Shames, H.-M. Vieth, E. Osawa, M. Takahashi, and A. Ya. Vul’, Eur. Phys. J. B 52, 397 (2006).

    Article  ADS  Google Scholar 

  20. V. Osipov, M. Baidakova, T. Enoki, K. Takai, and A. Vul’, Fullerenes, Nanotubes Carbon Nanostruct. 14, 565 (2006).

    Article  Google Scholar 

  21. K. V. Reich, JETP Lett. 94(1), 22 (2011).

    Article  ADS  Google Scholar 

  22. A. S. Barnard, J. Mater. Chem. 18, 4038 (2008).

    Article  Google Scholar 

  23. L. Y. Chang, E. Õsawa, and A. S. Barnard, Nanoscale 33, 958 (2011).

    Article  ADS  Google Scholar 

  24. J.-Y. Raty, G. Galli, C. Bostedt, T. W. van Buuren, and L. J. Terminello, Phys. Rev. Lett. 90, 037401 (2003).

    Article  ADS  Google Scholar 

  25. K. C. Pandey, Phys. Rev. B: Condens. Matter 25, 4338 (1982).

    Article  ADS  Google Scholar 

  26. M. Marsili, O. Pulci, F. Bechstedt, and R. Del Sole, Phys. Rev. B: Condens. Matter 78, 205414 (2008).

    Article  ADS  Google Scholar 

  27. G. Bussetti, C. Goletti, P. Chiaradia, and T. Derry, Eur. Phys. Lett. 79, 57002 (2007).

    Article  ADS  Google Scholar 

  28. R. Graupner, M. Hollering, A. Ziegler, J. Ristein, and L. Ley, Phys. Rev. B: Condens. Matter 55, 10841 (1997).

    Article  ADS  Google Scholar 

  29. V. Grichko, T. Tyler, V. I. Grishko, and O. Shenderova, Nanotechnology 19, 225201 (2008).

    Article  ADS  Google Scholar 

  30. A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk, and L. Lu, Phys. Status Solidi A 204, 2881 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Vul’.

Additional information

Original Russian Text © A.E. Aleksenskii, A.Ya. Vul’, S.V. Konyakhin, K.V. Reich, L.V. Sharonova, E.D. Eidel’man, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 3, pp. 541–548.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksenskii, A.E., Vul’, A.Y., Konyakhin, S.V. et al. Optical properties of detonation nanodiamond hydrosols. Phys. Solid State 54, 578–585 (2012). https://doi.org/10.1134/S1063783412030031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412030031

Keywords

Navigation