Skip to main content
Log in

Frustrated multilayer ferromagnet-antiferromagnet structures: Beyond the scope of the exchange approximation (a review)

  • Reviews
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The frustrations of exchange interaction between ferromagnetic and antiferromagnetic layers, which arise at the uncompensated interface between the layers due to the interface roughness, have been described. The distribution of magnetic order parameters in the vicinity of the interface between the layers has been investigated, and the “layer thickness-roughness” magnetic phase diagram has been obtained in the case of the two-layer ferromagnet-antiferromagnet system and the ferromagnet-antiferromagnet-ferromagnet spin-valve system. An analysis has been performed taking into account the single-ion anisotropy energy, i.e., beyond the scope of the exchange approximation. It has been demonstrated that the number of easy axes in the layer plane, in many respects, determines the existence of an exchange shift of the hysteresis loop of the ferromagnet due to its interaction with the antiferromagnetic substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  2. G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B: Condens. Matter 39, 4828 (1989).

    Article  ADS  Google Scholar 

  3. S. M. Thompson, J. Phys. D: Appl. Phys. 41, 093001 (2008).

    Article  ADS  Google Scholar 

  4. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102(5), 1413 (1956).

    Article  ADS  Google Scholar 

  5. A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999).

    Article  ADS  Google Scholar 

  6. J. Nogués, J. Sort, V. Langlois, V. Skumryev, S. Surinach, J. S. Munoz, and M. D. Baro, Phys. Rep. 422, 65 (2005).

    Article  ADS  Google Scholar 

  7. M. Finazzi, L. Duo, and F. Ciccacci, Surf. Sci. Rep. 64, 139 (2009).

    Article  ADS  Google Scholar 

  8. A. I. Morosov, I. A. Morosov, and A. S. Sigov, Phys. Solid State 52(2), 323 (2010).

    Article  ADS  Google Scholar 

  9. A. Berger and H. Hopster, Phys. Rev. Lett. 73, 193 (1994).

    Article  ADS  Google Scholar 

  10. E. J. Escorcia-Aparicio, H. J. Choi, W. L. Ling, R. K. Kawakami, and Z. Q. Qiu, Phys. Rev. Lett. 81, 2144 (1998).

    Article  ADS  Google Scholar 

  11. V. D. Levchenko, Yu. S. Sigov, A. I. Morosov, and A. S. Sigov, JETP 87(5), 985 (1998).

    Article  ADS  Google Scholar 

  12. V. D. Levchenko, A. I. Morosov, and A. S. Sigov, JETP Lett. 71(9), 373 (2000).

    Article  ADS  Google Scholar 

  13. A. I. Morosov and A. S. Sigov, Phys. Solid State 46(3), 395 (2004).

    Article  ADS  Google Scholar 

  14. U. Schlickum, N. Janke-Gilman, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett. 92(10), 107203 (2004).

    Article  ADS  Google Scholar 

  15. W. Wulfhekel, U. Schlickum, and J. Kirschner, Microsc. Res. Tech. 66, 105 (2005).

    Article  Google Scholar 

  16. T. K. Yamada, E. Martinez, A. Vega, R. Robles, D. Stoeffler, A. L. Vazquez de Parga, T. Mizoguchi, and H. van Kempen, Nanotechnology 18, 235702 (2007).

    Article  ADS  Google Scholar 

  17. R. Robles, E. Martínez, D. Stoeffler, and A. Vega, Phys. Rev. B: Condens. Matter 68(9), 094413 (2003).

    Article  ADS  Google Scholar 

  18. H. Tan, E. Martínez, G. Borstel, and A. Vega, Phys. Rev. B: Condens. Matter 81(17), 174426 (2010).

    Article  ADS  Google Scholar 

  19. A. I. Morosov, Phys. Solid State 50(4), 703 (2008).

    Article  ADS  Google Scholar 

  20. J. C. Slonczewski, J. Magn. Magn. Mater. 150, 13 (1995).

    Article  ADS  Google Scholar 

  21. D. Stoeffler and F. Gautier, J. Magn. Magn. Mater. 147(3), 260 (1995).

    Article  ADS  Google Scholar 

  22. E. E. Fullerton, C. H. Sowers, and S. D. Bader, Phys. Rev. B: Condens. Matter 56(9), 5468 (1997).

    Article  ADS  Google Scholar 

  23. A. Berger and E. E. Fullerton, J. Magn. Magn. Mater. 165, 471 (1997).

    Article  ADS  Google Scholar 

  24. E. J. Escorcia-Aparicio, J. H. Wolfe, H. J. Choi, W. L. Ling, R. K. Kawakami, and Z. Q. Qiu, Phys. Rev. B: Condens. Matter 59(18), 11892 (1999).

    Article  ADS  Google Scholar 

  25. D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987).

    Article  ADS  Google Scholar 

  26. A. I. Morosov and A. S. Sigov, Phys. Solid State 44(11), 2098 (2002).

    Article  ADS  Google Scholar 

  27. S. Mangin, G. Marchal, and B. Barbara, Phys. Rev. Lett. 82, 4336 (1999).

    Article  ADS  Google Scholar 

  28. A. I. Morozov and D. O. Rynkov, Nauchn. Vestn. Mosk. Inst. Radiotekh., Elektron. Avtom., No. 1, 50 (2007).

  29. N. C. Koon, Phys. Rev. Lett. 78, 4865 (1997).

    Article  ADS  Google Scholar 

  30. A. I. Morosov, Phys. Solid State 45(10), 1932 (2003).

    Article  ADS  Google Scholar 

  31. A. I. Morosov and D. O. Rynkov, Phys. Solid State 49(10), 1940 (2007).

    Article  ADS  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  33. A. P. Malozemoff, Phys. Rev. B: Condens. Matter 35, 3679 (1987).

    Article  ADS  Google Scholar 

  34. V. D. Levchenko, A. I. Morozov, and A. S. Sigov, Phys. Solid State 44(1), 133 (2002).

    Article  ADS  Google Scholar 

  35. U. Nowak, K. D. Usadel, J. Keller, P. Miltényi, B. Beschoten, and G. Güntherodt, Phys. Rev. B: Condens. Matter 66(1), 014430 (2002).

    Article  ADS  Google Scholar 

  36. T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 81(20), 4516 (1998).

    Article  ADS  Google Scholar 

  37. A. I. Morozov and A. S. Sigov, Phys. Solid State 41(7), 1130 (1999).

    Article  ADS  Google Scholar 

  38. V. D. Levchenko, A. I. Morozov, and A. S. Sigov, JETP 94(5), 985 (2002).

    Article  ADS  Google Scholar 

  39. A. I. Morosov and I. A. Morosov, Phys. Solid State 50(10), 1924 (2008).

    Article  ADS  Google Scholar 

  40. A. Paul, J. Magn. Magn. Mater. 240(1–3), 497 (2002).

    Article  ADS  Google Scholar 

  41. A. Shreyer, J. F. Ankner, Th. Zeidler, H. Zabel, M. Schafer, J. A. Wolf, P. Grunberg, and C. F. Majkrzak, Phys. Rev. B: Condens. Matter 52, 16066 (1995).

    Article  ADS  Google Scholar 

  42. V. V. Ustinov, M. M. Kirillova, I. D. Lobov, V. M. Maevskii, A. A. Makhnev, V. I. Minin, L. N. Romashev, A. R. Del’, A. V. Semerikov, and E. I. Shreder, JETP 82(2), 253 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Morosov.

Additional information

Original Russian Text © A.I. Morosov, A.S. Sigov, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 2, pp. 209–229.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morosov, A.I., Sigov, A.S. Frustrated multilayer ferromagnet-antiferromagnet structures: Beyond the scope of the exchange approximation (a review). Phys. Solid State 54, 219–242 (2012). https://doi.org/10.1134/S1063783412020187

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412020187

Keywords

Navigation