Skip to main content
Log in

Study of divalent and trivalent chromium in forsterite by high-frequency EPR spectroscopy

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Divalent and trivalent chromium ions Cr2+ and Cr3+ replacing magnesium ions at octahedral positions in Mg2SiO4: Cr and Mg2SiO4: Cr: Li crystals are investigated by submillimeter EPR spectroscopy in the frequency range 65–230 GHz. The crystals are grown from the melt by the Czochralski method. The content of mixed-valence chromium species in forsterite is analyzed. It is demonstrated that, in crystals grown in argon (the oxygen partial pressure is \( P_{O_2 } \) = 0.01 kPa), approximately half of the chromium ions are in the divalent form. The Cr2+ ions are distributed over the M1 and M2 positions in a ratio of approximately 2: 1. A change in the oxygen partial pressure \( P_{O_2 } \) and the chromium concentration, as well as an additional doping with lithium, does not lead to substantial changes in the distribution of divalent chromium ions over the positions. It is shown that an increase in the oxygen partial pressure \( P_{O_2 } \) from 0.01 to 2.00 kPa results in a decrease in the coefficient of divalent chromium distribution between the crystal and the melt. Doping with lithium also decreases the concentration of Cr2+ centers. In crystals grown without lithium, approximately half of the trivalent chromium ions are associated with magnesium vacancies. The addition of lithium leads to the destruction of these associates, an increase in the concentration of individual Cr3+ centers, and the formation of lithium associates with trivalent chromium ions. The conditions for the formation of associates of trivalent chromium ions with lithium ions are optimum when the crystal contains approximately identical amounts of Cr3+ and Li+ ions. Doping with lithium increases the concentration of Cr3+ ions and, thus, decreases the fraction of Cr2+ and Cr4+ ions in the total content of chromium centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Rager, Phys. Chem. Miner. 1, 371 (1977).

    Article  ADS  Google Scholar 

  2. V. F. Tarasov, G. S. Shakurov, and A. N. Gavrilenko, Fiz. Tverd. Tela (St. Petersburg) 37(2), 499 (1995) [Phys. Solid State 37 (2), 270 (1995)].

    Google Scholar 

  3. G. S. Shakurov and V. F. Tarasov, Appl. Magn. Res. 21, 597 (2001).

    Article  Google Scholar 

  4. I. D. Ryabov, A. V. Gaĭster, and E. V. Zharikov, Fiz. Tverd. Tela (St. Petersburg) 45(1), 51 (2003) [Phys. Solid State 45 (1), 51 (2003)].

    Google Scholar 

  5. V. F. Lebedev, I. D. Ryabov, A. V. Gaister, A. S. Podstavkin, E. V. Zharikov, and A. V. Shestakov, Fiz. Tverd. Tela (St. Petersburg) 47(8), 1447 (2005) [Phys. Solid State 47 (8), 1504 (2005)].

    Google Scholar 

  6. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, Appl. Phys. Lett. 52, 1040 (1988).

    Article  ADS  Google Scholar 

  7. S. Kück, Appl. Phys. B: Lasers Opt. 72, 515 (2001).

    ADS  Google Scholar 

  8. A. V. Gaĭster, E. V. Zharikov, V. F. Lebedev, A. S. Podstavkin, S. Yu. Tenyakov, A. V. Shestakov, and A. I. Shcherbakov, Kvantovaya Élektron. (Moscow) 34, 693 (2004).

    Article  Google Scholar 

  9. L. V. Bershov, R. M. Mineeva, A. V. Speranskiĭ, and S. Khafner, Dokl. Akad. Nauk 260, 191 (1981).

    Google Scholar 

  10. Y. Yamaguchi, K. Yamaguchi, and Y. Nobe, J. Cryst. Growth 128, 996 (1993).

    Article  ADS  Google Scholar 

  11. J. L. Mass, J. M. Burlitch, S. A. Markgraf, M. Higuchi, R. Dieckman, D. B. Barber, and C. R. Pollock, J. Cryst. Growth 165, 250 (1996).

    Article  ADS  Google Scholar 

  12. E. V. Zharikov, A. V. Gaister, V. B. Dudnikova, and V. S. Urusov, J. Cryst. Growth 275, 871 (2005).

    Article  ADS  Google Scholar 

  13. A. Sugitomo, Y. Nobe, T. Yamazaki, Y. Yamaguchi, K. Yamagushi, Y. Segawa, and H. Takei, Phys. Chem. Miner. 24, 333 (1997).

    Article  ADS  Google Scholar 

  14. V. F. Lebedev, A. V. Gaister, S. Yu. Tenyakov, and E. V. Zharikov, in Laser Optics-2003: Solid State Lasers and Nonlinear Frequency Conversion, Ed. by V. I. Ustugov (Proc. SPIE—Int. Soc. Opt. Eng. 5478, 37 (2004)).

  15. I. D. Ryabov, A. V. Gaister, O. N. Zaytseva, E. V. Zharikov, in Abstracts of Papers of the International Conference “Modern Development of Magnetic Resonance-2007,” Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan, Russia, 2007 (Kazan, 2007), p. 229.

  16. V. B. Dudnikova, A. V. Gaister, E. V. Zharikov, N. I. Gul’ko, V. G. Senin, and V. S. Urusov, Neorg. Mater. 39(8), 985 (2003) [Inorg. Mater. 39 (8), 845 (2003)].

    Article  Google Scholar 

  17. V. F. Tarasov and G. S. Shakurov, Appl. Magn. Res. 2, 571 (1991).

    Article  Google Scholar 

  18. V. F. Tarasov and G. S. Shakurov, Opt. Spektrosk. 81(6), 962 (1996) [Opt. Spectrosc. 81 (6), 880 (1996)].

    Google Scholar 

  19. A. V. Gaĭster, E. V. Zharikov, A. A. Konovalov, K. A. Subbotin, and V. F. Tarasov, Pis’ma Zh. Éksp. Teor. Fiz. 77(11), 753 (2003) [JETP Lett. 77 (11), 625 (2003)].

    Google Scholar 

  20. I. D. Ryabov, A. V. Gaister, and E. V. Zharikov, in Abstracts of Papers of the International Conference “Modern Development of Magnetic Resonance-2004,” Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan, Russia, 2004 (Kazan, 2004), p. 157.

  21. V. B. Dudnikova, A. V. Gaister, E. V. Zharikov, V. G. Senin, and V. S. Urusov, Geokhimiya, No. 5, 519 (2005) [Geochem. Int. 43 (5), 471 (2005)].

  22. E. V. Zharikov, V. F. Lebedev, V. B. Dudnikova, A. V. Gaĭster, and I. D. Ryabov, in The World of Minerals, Crystals, and Nanostructures, Ed. by N. P. Yushkin and V. I. Rakin (Geoprint, Syktyvkar, 2008), p. 157 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasov.

Additional information

Original Russian Text © A.A. Konovalov, V.F. Tarasov, V.B. Dudnikova, E.V. Zharikov, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 8, pp. 1533–1540.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konovalov, A.A., Tarasov, V.F., Dudnikova, V.B. et al. Study of divalent and trivalent chromium in forsterite by high-frequency EPR spectroscopy. Phys. Solid State 51, 1626–1633 (2009). https://doi.org/10.1134/S1063783409080186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409080186

PACS numbers

Navigation