Skip to main content
Log in

Specific features of the pyroelectric properties of actual RbTiOPO4 single crystals in the temperature range 4.2–300 K

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The pyroelectric properties of samples cut from various growth sectors of RbTiOPO4 single crystals grown from solution in a melt were measured in the temperature range from 4.2 to 300 K. The experimental values of the pyroelectric coefficient range from −1.3 × 10−5 to −4.6 × 10−5 C/m2 K. For the samples cut from the (100) sector, pronounced anomalies were revealed at 85 and 275 K, which, in our opinion, can be due to the contribution of associates formed by the coordination tetrahedra PO4(1) and PO4(2) and interstitial rubidium Rb i . At T > 280 K, superionic conductivity begins to manifest itself in all of the samples studied, which indicates the decomposition of the dipole complexes with increasing temperature. From the measured pyroelectric coefficient and birefringence along the polar direction, the spontaneous polarization of rubidium titanyl is calculated to be 0.5 C/m2 at 250 K, which is comparable in magnitude to that of lithium tantalate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Satynanayan, A. Deepthy, and H. L. Blat, Crit. Rev. Solid State Mater. Sci. 24(2), 103 (1999).

    Article  ADS  Google Scholar 

  2. V. I. Voronkova, I. N. Leont’eva, N. I. Sorokina, T. I. Ovsetsina, and I. A. Verin, Kristallografiya 51(6), 1067 (2006) [Crystallogr. Rep. 51 (6), 977 (2006)].

    Google Scholar 

  3. M. Roth, E. Samoka, V. Tseitlin, Yu. Shaldin, M. Rabadanov, and S. Matyjasik, in Proceedings of the 4th International Symposium on Laser, Scintillator, and Non-Linear Optical Materials, Prague, Czech Republic, 2006 (Prague, 2006), p. 59.

  4. S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, J. Phys. Soc. Jpn. 62, 183 (1993).

    Article  ADS  Google Scholar 

  5. M. Roth, N. Angert, M. Tseitlin, and A. Aleksandrovskii, Opt. Mater. 16, 131 (2000).

    Article  ADS  Google Scholar 

  6. J. Tordjman, R. Masse, and J. C. Guitel, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 139, 103 (1974).

    Google Scholar 

  7. P. Delarue, C. Lacomte, M. Jannin, G. Marnien, and B. Menaer, Phys. Rev. B: Condens. Matter 58, 5287 (1998).

    ADS  Google Scholar 

  8. Yu. V. Shaldin, S. Matyjasik, M. Kh. Rabadanov, N. Angert, M. Roth, and M. Tseitlin, Fiz. Tverd. Tela (St. Petersburg) 48(5), 858 (2006) [Phys. Solid State 48 (5), 815 (2006)].

    Google Scholar 

  9. J. A. Schouten, Tensor Analysis for Physicists (Dover, New York, 1959; Nauka, Moscow, 1965).

    Google Scholar 

  10. Yu. V. Shaldin, Fiz. Tverd. Tela (Leningrad) 19(6), 1580 (1977) [Sov. Phys. Solid State 19 (6), 922 (1977)].

    Google Scholar 

  11. Yu. V. Shaldin, S. Matyjasik, and M. Kh. Rabadanov, Kristallografiya 48(2), 350 (2003) [Crystallogr. Rep. 48 (2), 315 (2003)].

    Google Scholar 

  12. Yu. V. Shaldin and S. Matyyasik, Dokl. Akad. Nauk 409(8), 467 (2006) [Dokl. Phys. 51 (8), 397 (2006)].

    Google Scholar 

  13. M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  14. S. Norberg and N. Ishizawa, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 61, 199 (2005).

    Article  Google Scholar 

  15. Yu. V. Shaldin and R. Poprawski, J. Phys. Chem. Solids 51, 101 (2000).

    Article  Google Scholar 

  16. Yu. V. Shaldin, R. Popravski, S. Matyyasik, V. V. Dozmarov, and V. A. D’yakov, Fiz. Tverd. Tela (St. Petersburg) 37(4), 1160 (1995) [Phys. Solid State 37 (4), 630 (1995)].

    Google Scholar 

  17. P. Urenski and G. Rosenman, J. Phys. D: Appl. Phys. 33, 2006 (2000).

    Article  Google Scholar 

  18. J. D. Bierlein and H. Vanherzeelle, J. Opt. Soc. Am. B 6, 622 (1989).

    Article  ADS  Google Scholar 

  19. M. Wang, J. Y. Wang, Y. G. Lin, and J. Q. Wei, Ferroelectrics 115, 113 (1991).

    Google Scholar 

  20. Yu. V. Shaldin, S. Matyjasik, M. Kh. Rabadanov, et al., in Abstracts of Papers of the XI National Conference on Crystal Growth, Moscow, Russia, 2004 (Moscow, 2004), p. 303.

  21. N. Angert, L. Kaplun, M. Tseitlin, E. Yashchin, and M. Roth, J. Cryst. Growth 137, 116 (1994).

    Article  ADS  Google Scholar 

  22. Yu. V. Shaldin, Kristallografiya 47(3), 531 (2002) [Crystallogr. Rep. 47 (3), 484 (2002)].

    Google Scholar 

  23. A. Brause and R. Cowley, Structural Phase Transitions (Taylor and Francis, London, 1981; Mir, Moscow, 1984).

    Google Scholar 

  24. A. P. Levanyuk and A. S. Sigov, Defects and Structural Phase Transitions (Gordon and Breach, New York, 1998), p. 208.

    Google Scholar 

  25. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Claredon, Oxford, 1954), p. 327.

    MATH  Google Scholar 

  26. I. E. Tamm, Fundamentals of the Theory of Electricity (Nauka, Moscow, 1976; Moscow, Mir, 1979).

    Google Scholar 

  27. S. Abrahams, S. Kurts, and P. Jamienson, Phys. Rev. 172, 551 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Shaldin.

Additional information

Original Russian Text © Yu.V. Shaldin, S. Matyjasik, M. Tseitlin, M. Roth, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 7, pp. 1263–1269.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaldin, Y.V., Matyjasik, S., Tseitlin, M. et al. Specific features of the pyroelectric properties of actual RbTiOPO4 single crystals in the temperature range 4.2–300 K. Phys. Solid State 50, 1315–1321 (2008). https://doi.org/10.1134/S1063783408070196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408070196

PACS numbers

Navigation