Skip to main content
Log in

Structural phase transitions in nanosized ferroelectric barium strontium titanate films

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The lattice parameters of epitaxial barium strontium titanate films with various thicknesses (from 6 to 960 nm) were measured as a function of temperature in the normal and tangential directions with respect to the film plane using x-ray diffraction. The films were grown through the layer-by-layer mechanism by rf cathode sputtering under elevated oxygen pressure. A critical film thickness (∼ 50 nm) was found to exist, below and above which the films are subjected to compressive and tensile stresses, respectively. As the temperature varies from 780 to 100 K, the films undergo two diffuse structural phase transitions of the second order over the entire thickness range. The transitions in the films under tensile stresses are likely to be transformations from the paraelectric tetragonal to aa phase and then to r phase, whereas the transitions under compressive stresses are transformations from the tetragonal paraelectric to ferroelectric c phase and then, with further decreasing temperature, to r phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Acikel, T. R. Taylor, P. J. Hausen, J. S. Speck, and R. A. York, IEEE Microwave Wireless Components Lett. 12, 237 (2002).

    Article  Google Scholar 

  2. P. K. Petrov, N. McN. Alford, and S. Gevorgyan, Meas. Sci. Technol. 16(2), 583 (2005).

    Article  ADS  Google Scholar 

  3. B. H. Hoerman, B. M. Nichols, and B. W. Wessels, Phys. Rev. B: Condens. Matter 65, 224110 (2002).

    Google Scholar 

  4. N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998).

    Article  ADS  Google Scholar 

  5. V. G. Koukhar, N. A. Pertsev, and R. Wasser, Phys. Rev. B: Condens. Matter 64, 214103 (2001).

    Google Scholar 

  6. Z.-G. Ban and S. P. Alpay, J. Appl. Phys. 91, 9288 (2002).

    Article  ADS  Google Scholar 

  7. L. Lahoche, V. Lorman, S. B. Rochal, and J. M. Roelandt, J. Appl. Phys. 91, 4973 (2002).

    Article  ADS  Google Scholar 

  8. Yu. I. Yuzyuk, J. L. Sauvajol, P. Simon, V. L. Lorman, V. A. Alyoshin, I. N. Zakharchenko, and E. V. Sviridov, J. Appl. Phys. 93, 9930 (2003).

    Article  ADS  Google Scholar 

  9. D. A. Tenne, A. Soukiassian, X. X. Xi, H. Choosuwan, R. Guo, and A. S. Bhalla, J. Appl. Phys. 96, 6597 (2004).

    Article  ADS  Google Scholar 

  10. M. El Marssi, E. Le Marrec, I. A. Lukyanchuk, and M. G. Karkut, J. Appl. Phys. 94, 3307 (2003).

    Article  ADS  Google Scholar 

  11. H. Li, A. L. Roytburd, S. P. Alpay, T. D. Tran, L. Salamanca-Riba, and R. Ramech, Appl. Phys. Lett. 78, 2354 (2001).

    Article  ADS  Google Scholar 

  12. W. Y. Park and C. S. Hwang, Appl. Phys. Lett. 85, 5313 (2004).

    Article  ADS  Google Scholar 

  13. A. Lookman, J. McAneney, R. M. Bowman, J. M. Gregg, J. Kut, S. Rois, A. Ruediger, M. Dawber, and J. F. Scott, Appl. Phys. Lett. 85, 5010 (2004).

    Article  ADS  Google Scholar 

  14. A. Lookman, R. M. Bowman, J. M. Gregg, J. Kut, S. Rois, A. Ruediger, M. Dawber, and J. F. Scott, J. Appl. Phys. 96, 555 (2004).

    Article  ADS  Google Scholar 

  15. H. Terauchi, Y. Watanabe, H. Kasatani, K. Kamigaki, Y. Tano, T. Terashima, and Y. Bando, J. Phys. Soc. Jpn. 61, 2194 (1992).

    Article  ADS  Google Scholar 

  16. F. He and B. O. Wells, Appl. Phys. Lett. 88, 152908 (2006).

    Google Scholar 

  17. J. A. Bellotti, W. Chang, and S. B. Qadri, Appl. Phys. Lett. 88, 012902 (2006).

    Google Scholar 

  18. V. M. Mukhortov, Y. I. Golovko, G. N. Tolmachev, and A. N. Klevtzov, Ferroelectrics 247, 75 (2000).

    Article  Google Scholar 

  19. V. M. Mukhortov, Yu. I. Golovko, G. N. Tolmachev, and A. I. Mashchenko, Zh. Tekh. Fiz. 69(12), 87 (1999) [Tech. Phys. 44 (12), 1477 (1999)].

    Google Scholar 

  20. V. M. Mukhortov, Yu. I. Golovko, V. V. Kolesnikov, and S. V. Biryukov, Pis’ma Zh. Tekh. Fiz. 31(23), 75 (2005) [Tech. Phys. Lett. 31 (12), 1029 (2005)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovko.

Additional information

Original Russian Text © Yu.I. Golovko, V.M. Mukhortov, Yu.I. Yuzyuk, P.E. Janolin, B. Dkhil, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 3, pp. 467–471.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovko, Y.I., Mukhortov, V.M., Yuzyuk, Y.I. et al. Structural phase transitions in nanosized ferroelectric barium strontium titanate films. Phys. Solid State 50, 485–489 (2008). https://doi.org/10.1134/S1063783408030153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408030153

PACS numbers

Navigation