Skip to main content
Log in

Synthesis and Photoluminescence of Nanostructures Based on Zinc, Cadmium, and Manganese Sulfides in a Polyacrylate Matrix

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The photoluminescence of nanostructures based on zinc, cadmium, and manganese sulfides is studied in relation to the conditions of synthesis and doping in a (poly)methyl methacrylate (PMMA) medium. Photoluminescence excitation is defined by interband electronic transitions in the semiconductor structure, by the absorption of optical radiation energy at structural defects in the crystals, and by energy transfer to the excited energy levels of Mn2+ ions. The luminescence signal results from recombination processes at the levels of structural defects mainly at the surface of particles and from 4T16A1 electronic transitions between the intrinsic energy levels of Mn2+ ions. Based on variations observed in the photoluminescence and photoluminescence excitation spectra of PMMA/(Zn, Cd, Mn)S composites, some inferences about the structure of the particles are made. It is shown that their photoluminescence is influenced by the distribution of Mn2+ ions in the structure of the layers and at the surface of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. J. Cole, J. Alloys Compd. 636, 395 (2015).

    Article  Google Scholar 

  2. H. R. Feng, L. Tang, G. M. Zeng, X. Ren, B. Song, C. Liang, M. Y. Wei, J. F. Yu, Y. Zhou, and Y. C. Deng, Adv. Colloid Interface 267, 26 (2019).

    Article  Google Scholar 

  3. H. Zhao and F. Rosei, Chemistry 3, 229 (2017).

    Article  Google Scholar 

  4. A. M. El-Toni, M. A. Habila, J. P. Labis, Z. A. Alothman, M. Alhoshan, A. A. Elzatahry, and F. Zhang, Nanoscale 8, 2510 (2016).

    Article  ADS  Google Scholar 

  5. T. A. Esquivel-Castro, M. C. Ibarra-Alonso, J. Oliva, and A. Martínez-Luévanos, Mater. Sci. Eng. C 96, 915 (2019).

    Article  Google Scholar 

  6. W. Lu, X. Guo, Y. Luo, Q. Li, R. Zhu, and H. Pang, Chem. Eng. J. 355, 208 (2019).

    Article  Google Scholar 

  7. P. K. Kalambate, Dhanjai, H. Zhimei, Y. Li, S. Yue, X. Meilan, H. Yunhui, and S. Ashwini, Trends Anal. Chem. 115, 147 (2019).

    Article  Google Scholar 

  8. P. Mélinon, S. Begin-Colin, J. L. Duvail, F. Gauffre, N. H. Boime, G. Ledoux, J. Plain, P. Reiss, F. Silly, and B. Warot-Fonrose, Phys. Rep. 543, 163 (2014).

    Article  Google Scholar 

  9. R. Ghosh Chaudhuri and S. Paria, Chem. Rev. 112, 2373 (2011).

    Article  Google Scholar 

  10. M. B. Gawande, A. Goswami, R. Zboril, T. Asefa, H. Guo, D.-L. Peng, A. V. Biradar, and R. S. Varma, Chem. Soc. Rev. 44, 7540 (2015).

    Article  Google Scholar 

  11. H. Kumar, A. Kumari, and R. R. Singh, Opt. Mater. 69, 23 (2017).

    Article  ADS  Google Scholar 

  12. O. N. Kazankin, L. Ya. Markovskii, I. A. Mironov, F. M. Pekerman, and L. N. Petoshina, Inorganic Luminophores (Khimiya, Leningrad, 1975) [in Russian].

    Google Scholar 

  13. R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).

    Article  ADS  Google Scholar 

  14. D. Denzler, M. Olschewski, and K. Sattler, J. Appl. Phys. 84, 2841 (1998).

    Article  ADS  Google Scholar 

  15. M. F. Bulanyi, B. A. Polezhaev, and T. A. Prokof’ev, Semiconductors 32, 603 (1998).

    Article  ADS  Google Scholar 

  16. N. K. Morozova, I. A. Karetnikov, D. A. Mideros, E. M. Gavrishchuk, and V. B. Ikonnikov, Semiconductors 40, 1155 (2006).

    Article  ADS  Google Scholar 

  17. M. F. Bulanuy, A. V. Kovalenko, B. A. Polezaev, and T. A. Prokofyev, Semiconductors 43, 716 (2009).

    Article  ADS  Google Scholar 

  18. T. V. Vineeshkumar, R. D. Rithesh, S. Prasanth, N. V. Unnikrishnan, R. Philip, and C. Sudarsanakumar, Opt. Mater. 37, 439 (2014).

    Article  ADS  Google Scholar 

  19. J. K. Saluja, Y. Parganiha, N. Tiwari, V. Dubey, R. Tiwari, and A. Prabhath, Optik 127, 7958 (2016).

    Article  ADS  Google Scholar 

  20. K. A. Ogurtsov, M. M. Sychov, V. V. Bakhmetyev, V. N. Korobko, A. I. Ponyaev, F. I. Vysikailo, and V. V. Belyaev, Inorg. Mater. 52, 1115 (2016).

    Article  Google Scholar 

  21. T. V. Vineeshkumar, D. Rithesh Raj, S. Prasanth, Pranitha Sankar, N. V. Unnikrishnan, V. P. Mahadevan Pillai, and C. Sudarsanakumar, Opt. Mater. 58, 128 (2016).

    Article  ADS  Google Scholar 

  22. Y. Lu, Y. Q. Zhang, and X. A. Cao, Appl. Phys. Lett. 102, 023106 (2013).

    Article  ADS  Google Scholar 

  23. D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, J. Phys. Chem. B 108, 18826 (2004).

    Article  Google Scholar 

  24. C. Rosiles-Perez, Cerdán-Pasarán, S. Sidhik, D. Esparza, T. Lopez-Luke, and E. de la Rosa, Solar Energy 174, 240 (2018).

    Article  ADS  Google Scholar 

  25. N. S. M. Mustakim, C. A. Ubani, S. Sepeai, N. A. Ludin, M. A. M. Teridi, and M. A. Ibrahim, Solar Energy 163, 256 (2018).

    Article  ADS  Google Scholar 

  26. N. Qutub, B. M. Pirzada, K. Umar, O. Mehraj, M. Muneer, and S. Sabir, Phys. E (Amsterdam, Neth.) 74, 74 (2015).

  27. W. Cao, X. Zhang, Y. Zheng, K. Wang, and H. Dai, Int. J. Hydrogen Energy 42, 2924 (2017).

    Article  Google Scholar 

  28. P. Kunstman, J. Coulon, O. Kolmykov, H. Moussa, L. Balan, Gh. Medjahdi, J. Lulek, and R. Schneider, J. Lumin. 194, 760 (2018).

    Article  Google Scholar 

  29. Ch. V. Reddy, J. Shim, and M. Cho, J. Phys. Chem. Solids 103, 209 (2017).

    Article  ADS  Google Scholar 

  30. M. Abdel Rafea, A. A. M. Farag, O. El-Shazly, E. F. El-Wahidy, and N. Roushdy, Microelectron. Eng. 122, 40 (2014).

    Article  Google Scholar 

  31. M. Ashraf, S. S. Hussain, S. Riaz, and S. Naseem, Mater. Today: Proc. 2 (10–B), 5695 (2015).

    Google Scholar 

  32. S. R. Kumar, Suresh Kumar, S. K. Sharma, and D. Roy, Mater. Today: Proc. 2 (9–A), 4563 (2015).

    Google Scholar 

  33. W. Zhu, C. Wang, X. Li, M. S. Khan, X. Sun, and H. Ma, Biosens. Bioelectron. 97, 115 (2017).

    Article  Google Scholar 

  34. M. Masab, M. Hanif, F. Shah, M. Yasir, and N. Muhammad, Mater. Sci. Semicond. Process. 81, 113 (2018).

    Article  Google Scholar 

  35. M. A. Osman, A. G. Abd-Elrahim, and A. A. Othman, Mater. Charact. 144, 247 (2018).

    Article  Google Scholar 

  36. S. Muruganandam, G. Anbalagan, and G. Murugadoss, Indian J. Phys. 89, 835 (2015).

    Article  ADS  Google Scholar 

  37. N. H. Patel, M. P. Deshpande, S. H. Chaki, and H. R. Keharia, J. Mater. Sci. Mater. Electron. 28, 10866 (2017).

    Article  Google Scholar 

  38. J. Planelles-Aragó, B. Julián-López, E. Cordoncillo, P. Escribano, F. Pellé, B. Viana, and C. Sanchez, J. Mater. Chem. 18, 5193 (2008).

    Article  Google Scholar 

  39. Yu. G. Galyametdinov, D. O. Sagdeev, V. K. Voronkova, A. A. Sukhanov, and R. R. Shamilov, Russ. Chem. Bull. 67, 172 (2018).

    Article  Google Scholar 

  40. D. O. Sagdeev, R. R. Shamilov, V. K. Voronkova, A. A. Sukhanov, and Yu. G. Galyametdinov, Vestn. Tekhnol. Univ. 21 (10), 21 (2018).

    Google Scholar 

  41. D. O. Sagdeev, Extended Abstract of Cand. Sci. Dissertation (Kazan. Technol. Univ., Kazan’, 2019).

  42. V. F. Agekyan, Phys. Solid State 44, 2013 (2002).

    Article  ADS  Google Scholar 

  43. A. A. Bol, R. Van Beek, J. Ferwerda, and A. Meijerink, J. Phys. Chem. Solids 64, 247 (2003).

    Article  ADS  Google Scholar 

  44. S. Salimian and S. Farjami Shayesteh, J. Supercond. Nov. Magn. 25, 2009 (2012).

    Article  Google Scholar 

  45. A. A. Isaeva and V. P. Smagin, Polzunov. Vestn. 2, 107 (2018).

    Google Scholar 

  46. M. Romcevic, N. Romcevic, R. Kostic, L. Klopotowski, W. D. Dobrowolski, J. Kossut, and M. I. Čomor, J. Alloys Compd. 497, 46 (2010).

    Article  Google Scholar 

  47. M. Kuzmanović, D. K. Bozanić, D. Milivojević, D. M. Ćulafić, S. Stanković, C. Ballesteros, and J. Gonzalez-Benito, RSC Adv. 7, 53422 (2017).

  48. V. P. Smagin, D. A. Davydov, N. M. Unzhakova, and A. A. Biryukov, Russ. J. Inorg. Chem. 60, 1588 (2015).

    Article  Google Scholar 

  49. V. P. Smagin, A. A. Isaeva, N. S. Eremina, and A. A. Biryukov, Russ. J. Appl. Chem. 88, 1020 (2015).

    Article  Google Scholar 

  50. V. P. Smagin, N. S. Eremina, and A. A. Isaeva, Russ. J. Inorg. Chem. 62, 131 (2017).

    Article  Google Scholar 

  51. A. A. Biryukov, T. I. Izaak, V. A. Svetlichnyi, and O. V. Babkina, Russ. Phys. J. 49, 1354 (2006).

    Article  Google Scholar 

  52. S. Mohan, O. S. Oluwafemi, S. P. Songca, S. C. George, P. Miska, D. Rouxel, N. Kalarikkal, and S. Thomas, Mater. Sci. Semicond. Process. 39, 587 (2015).

    Article  Google Scholar 

  53. K. Matras-Postolek, K. Chojnacka-Gorka, M. Bredol, and K. Gugula, J. Lumin. 203, 655 (2018).

    Article  Google Scholar 

  54. R. M. Abozaid, Z. Ž. Lazarević, I. Radović, M. Gilić, D. Šević, M. S. Rabasović, and I. Radović, Opt. Mater. 92, 405 (2019).

    Article  ADS  Google Scholar 

  55. A. A. Isaeva and V. P. Smagin, Russ. J. Inorg. Chem. 64, 1199 (2019).

    Article  Google Scholar 

  56. V. P. Smagin, N. S. Eremina, D. A. Davydov, K. V. Nazarova, and G. M. Mokrousov, Inorg. Mater. 52, 611 (2016).

    Article  Google Scholar 

  57. V. G. Klyuev, T. L. Maiorova, M. Fam Tkhi Khai, and V. N. Semenov, Kondens. Sredy Mezhfaz. Granitsy 11 (1), 58 (2009).

    Google Scholar 

  58. V. P. Smagin, N. S. Eremina, and M. S. Leonov, Semiconductors 52, 1022 (2018).

    Article  ADS  Google Scholar 

  59. A. A. Isaeva and V. P. Smagin, Semiconductors 54, 511 (2020).

    Article  ADS  Google Scholar 

  60. L. Brus, Quant. Electron. 22, 1909 (1986).

    Article  ADS  Google Scholar 

  61. E. A. Romanov, Extended Abstract of Cand. Sci. Dissertation (Udm. State Univ., Izhevsk, 2011).

  62. S. V. Rempel’, A. A. Razvodov, M. S. Nebogatikov, E. V. Shishkina, V. Ya. Shur, and A. A. Rempel’, Phys. Solid State 55, 624 (2013).

    Article  ADS  Google Scholar 

  63. V. P. Smagin, N. S. Eremina, A. A. Isaeva, and Yu. V. Lyakhova, Inorg. Mater. 53, 263 (2017).

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 19-33-90023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Smagin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaeva, A.A., Smagin, V.P. Synthesis and Photoluminescence of Nanostructures Based on Zinc, Cadmium, and Manganese Sulfides in a Polyacrylate Matrix. Semiconductors 54, 1583–1592 (2020). https://doi.org/10.1134/S1063782620120106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620120106

Keywords:

Navigation