Skip to main content
Log in

Features of Defect Formation in Nanostructured Silicon under Ion Irradiation

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Nanostructured silicon is irradiated by Si+ and He+ ions with energies of 200 and 150 keV, respectively. Destruction of the structure of irradiated samples and the accumulation of defects at different irradiation fluences are investigated by Raman scattering. It is shown that single-crystal silicon films are amorphized under irradiation at 0.7 displacements per atom. However, at 0.5 displacements per atom, porous silicon does not completely amorphize and the Raman spectra contain a weak signal of the amorphous silicon phase along with a pronounced signal of the crystalline silicon phase. The size of nanocrystals in the structure of porous silicon at different irradiation fluences is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. A. Gonchar, A. A. Zubairova, A. Schleusener, L. A. Osminkina, and V. Sivakov, Nanoscale Res. Lett. 11, 357 (2016).

    Article  ADS  Google Scholar 

  2. M. B. Gongalsky, Yu. V. Kargina, L. A. Osminkina, A. M. Perepukhov, M. V. Gulyaev, A. N. Vasiliev, Yu. A. Pirogov, A. V. Maximychev, and V. Yu. Timoshenko, Appl. Phys. Lett. 107, 233702 (2015).

    Article  ADS  Google Scholar 

  3. R. S. Smerdov, Yu. M. Spivak, V. S. Levitsky, and V. A. Moshnikov, J. Phys.: Conf. Ser. 1038, 012064 (2018).

    Google Scholar 

  4. A. S. Lenshin, Semiconductors 52, 324 (2018).

    Article  ADS  Google Scholar 

  5. A. A. Shemukhin, Yu. V. Balakshin, V. S. Chernysh, A. S. Patrakeev, S. A. Golubkov, N. N. Egorov, A. I. Sidorov, B. A. Malyukov, V. N. Statsenko, and V. D. Chumak, Tech. Phys. Lett. 38, 907 (2012).

    Article  ADS  Google Scholar 

  6. V. Parkhutik, Solid-State Electron. 43, 1121 (1999).

    Article  ADS  Google Scholar 

  7. Q. Ma, R. Xiong, and Y. M. Huang, J. Lumin. 131, 2053 (2011).

    Article  Google Scholar 

  8. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  9. M. Saleem, M. Rafiq, S.-Y. Seo, and K. H. Lee, Biosci. Rep. 36 (2), 1 (2016).

    Article  Google Scholar 

  10. P. N. Lim, T. Konishia, Z. Wang, J. Feng, L. Wang, J. Han, Z. Yang, and E. S. Thian, Mater. Lett. 212, 90 (2018).

    Article  Google Scholar 

  11. W. Y. Tong, M. J. Sweetman, E. R. Marzouk, C. Fraser, T. Kuchel, and N. H. Voelcker, Biomaterials 74, 217 (2016).

    Article  Google Scholar 

  12. E. Tolstik, L. A. Osminkina, C. Matthäus, M. Burkhardt, K. E. Tsurikov, U. A. Natashina, V. Y. Timoshenko, R. Heintzmann, J. Popp, and V. Sivakov, Nanomed.: NBM 12, 1931 (2016).

    Article  Google Scholar 

  13. Yu. M. Spivak, A. O. Belorus, A. A. Panevin, S. G. Zhuravskii, V. A. Moshnikov, K. Bespalova, P. A. Somov, Yu. M. Zhukov, A. S. Komolov, L. V. Chistyakova, and N. Yu. Grigor’eva, Tech. Phys. 63, 1352 (2018).

    Article  Google Scholar 

  14. Song Bai, Ning Zhang, Chao Gao, and Yujie Xiong, Nano Energy 53, 296 (2018).

    Article  Google Scholar 

  15. V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, Phys. Rep. 613, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  16. V. S. Vendamani, Z. Y. Dang, P. Ramana, A. P. Pathak, V. V. Ravi Kanth Kumar, M. B. H. Breese, and S. V. S. Nageswara Rao, Nucl. Instrum. Methods Phys. Res., Sect. B 358, 105 (2015).

    Google Scholar 

  17. Yin-Yu Chen, Der-Sheng Chao, Hsu-Sheng Tsai, and Jenq-Horng Liang, Nucl. Instrum. Methods Phys. Res., Sect. B 372, 114 (2016).

    Google Scholar 

  18. A. G. Hernández, A. E. Escobosa-Echavarría, and Y. Kudriavtsev, Appl. Surf. Sci. 428, 1098 (2018).

    Article  ADS  Google Scholar 

  19. V. S. Vendamani, S. V. S. Nageswara Rao, and A. P. Pathak, Nucl. Instrum. Methods Phys. Res., Sect. B 315, 188 (2013).

    Google Scholar 

  20. S. Hamad, G. K. Podagatlapalli, V. S. Vendamani, S. V. S. Nageswara Rao, A. P. Pathak, S. P. Tewari, and S. Venugopal Rao, J. Phys. Chem. C 118, 7139 (2014).

    Article  Google Scholar 

  21. F. Caridi, A. Picciotto, L. Vanzetti, E. Iacob, and C. Scolaro, Rad. Phys. Chem. 115, 49 (2015).

    Article  ADS  Google Scholar 

  22. Li-Xin Yang, Yan-Meng Chao, Li Jia, and Chao-Bo Li, Appl. Therm. Eng. 99, 253 (2016).

    Article  Google Scholar 

  23. A. E. Ieshkin, S. E. Svyakhovskiy, and V. S. Chernysh, Vacuum 148, 272 (2018).

    Article  ADS  Google Scholar 

  24. A. A. Shemukhin, Yu. V. Balakshin, V. S. Chernysh, S. A. Golubkov, N. N. Egorov, and A. I. Sidorov, Semiconductors 48, 517 (2014).

    Article  ADS  Google Scholar 

  25. A. A. Shemukhin, A. V. Nazarov, Yu. V. Balakshin, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 354, 274 (2015).

    Google Scholar 

  26. S. P. Low and N. H. Voelcker, in Handbook of Porous Silicon, Ed by L. T. Canham (Springer Int., Switzerland, 2014), p. 381.

    Google Scholar 

  27. V. A. Yuzova, A. A. Levitskii, and P. A. Kharlashin, Zh. SFU, Ser.: Tekh. Tekhnol. 4 (1), 92 (2011).

    Google Scholar 

  28. Z. C. Feng and R. Tsu, Porous Silicon (World Scientifics, Singapore, 2014).

    Google Scholar 

  29. K. V. Karabeshkin, P. A. Karaseov, and A. I. Titov, Semiconductors 47, 242 (2013).

    Article  ADS  Google Scholar 

  30. R. Herino, G. Bomchil, K. Barla, C. Bertrand, and J. L. Ginoux, J. Electrochem. Soc. 134, 1994 (1987).

    Article  Google Scholar 

  31. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).

    Google Scholar 

  32. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).

    Book  Google Scholar 

  33. A. A. Shemukhin, Yu. V. Balakshin, P. N. Chernykh, and V. S. Chernysh, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 318 (2013).

    Article  Google Scholar 

  34. A. A. Shemukhin, Yu. V. Balakshin, A. P. Evseev, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 507 (2017).

    Google Scholar 

  35. Q. Nie, Z. Jiang, Z. Gan, S. Liu, H. Yan, and H. Fang, J. Cryst. Growth 488, 1 (2018).

    Article  ADS  Google Scholar 

  36. P. Petrik, O. Polgár, T. Lohner, M. Fried, N. Q. Khánh, and J. Gyulai, Solid State Phenom. 82–84, 765 (2002).

    Google Scholar 

  37. K. D. Kushkina, A. V. Nazarov, A. A. Shemukhin, and A. P. Evseev, Prikl. Fiz., No. 2, 54 (2017).

  38. Yu. V. Balakshin, A. A. Shemukhin, A. V. Nazarov, A. V. Kozhemiako, and V. S. Chernysh, Tech. Phys. 63, 1839 (2018).

    Article  Google Scholar 

  39. R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, and A. Ramanand, Mater. Lett. 58, 3745 (2004).

    Article  Google Scholar 

  40. T. A. Harriman, D. A. Lucca, J.-K. Lee, M. J. Klopfstein, K. Herrmann, and M. Nastasi, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1232 (2009).

    Google Scholar 

  41. K. D. Kushkina, A. A. Shemukhin, E. A. Vorobyeva, K. A. Bukunov, A. P. Evseev, A. A. Tatarintsev, K. I. Maslakov, N. G. Chechenin, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 430, 11 (2018).

    Google Scholar 

  42. R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, and F. P. Xavier, Phys. B: Condens. Matter 337, 36 (3002).

  43. A. Aminzadeh and H. Sarikhani-fard, Spectrochim. Acta, Part A 55, 1421 (1999).

    Article  ADS  Google Scholar 

  44. D. I. Tetelbaum, A. A. Ezhevskii, and A. N. Mikhailov, Semiconductors 37, 1342 (2003).

    Article  ADS  Google Scholar 

  45. H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).

    Article  ADS  Google Scholar 

  46. I. H. Campbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).

    Article  ADS  Google Scholar 

  47. Dongsheng Xu, Guolin Guo, Linlin Gui, Youqi Tang, B. R. Zhang, and G. G. Qin, J. Appl. Phys. 86, 2066 (1999).

    Article  ADS  Google Scholar 

  48. Y. Ymamura and H. Tawara, Energy Dependence of Ion-Induced Sputtering Yields from Monoatomic Solids at Normal Incidence (Natl. Inst. Fusion Sci., Chigusa-ku, Nagoya, Japan, 1995).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to D.A. Nikolaev for performing the numerical simulation.

FUNDING

This study was supported by the Russian Foundation for Basic Research, project no. 18-32-01040 mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kozhemiako.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhemiako, A.V., Evseev, A.P., Balakshin, Y.V. et al. Features of Defect Formation in Nanostructured Silicon under Ion Irradiation. Semiconductors 53, 800–805 (2019). https://doi.org/10.1134/S1063782619060095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619060095

Navigation