Skip to main content
Log in

Direct exchange between silicon nanocrystals and tunnel oxide traps under illumination on single electron photodetector

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In this paper we present the trapping of photogenerated charge carriers for 300 s resulted by their direct exchange under illumination between a few silicon nanocrystals (ncs-Si) embedded in an oxide tunnel layer (SiO x = 1.5) and the tunnel oxide traps levels for a single electron photodetector (photo-SET or nanopixel). At first place, the presence of a photocurrent limited in the inversion zone under illumination in the I–V curves confirms the creation of a pair electron/hole (e–h) at high energy. This photogenerated charge carriers can be trapped in the oxide. Using the capacitance-voltage under illumination (the photo-CV measurements) we show a hysteresis chargement limited in the inversion area, indicating that the photo-generated charge carriers are stored at traps levels at the interface and within ncs-Si. The direct exchange of the photogenerated charge carriers between the interface traps levels and the ncs-Si contributed on the photomemory effect for 300 s for our nanopixel at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  2. A. G. Cullis and L. T. Canham, Nature 353, 335 (1991).

    Article  ADS  Google Scholar 

  3. D. Jurbergs, R. Rogojina, L. Mangolini, and U. Kortshagen, Appl. Phys. Lett. 88, 233116 (2006).

    Article  ADS  Google Scholar 

  4. X. G. Li, Y. Q. He, and M. T. Swihart, Langmuir 20, 4720 (2004).

    Article  Google Scholar 

  5. C. M. Hessel, E. I. Henderson, and J. G. C. Veinot, Chem. Mater. 18, 6139 (2006).

    Article  Google Scholar 

  6. C. M. Hessel, D. Reid, M. G. Panthani, M. R. Rasch, B. W. Goodfellow, et al., Chem. Mater. 24, 393 (2012).

    Article  Google Scholar 

  7. K.-Y. Cheng R. Anthony, U. R. Kortshagen, and R. J. Holmes, Nano Lett. 11, 1952 (2011).

    Article  ADS  Google Scholar 

  8. D. P. Puzzo, E. H. Henderson, M. G. Helander, Z. Wang, G. A. Ozin, and Z. Lu, Nano Lett. 11, 1585 (2011).

    Article  ADS  Google Scholar 

  9. L. G. E. Leonbandung, and S. Y. Chou, Sci. Mag. 275, 649 (1999).

    Google Scholar 

  10. http: //pavel.physics.sunysb.edu/likharev/personal/PIEE99.pdf

  11. A. Fujiwara, Y. Takahashi, and K. Murase, Phys. Rev. Lett. 78, 1532 (1997).

    Article  ADS  Google Scholar 

  12. R. Nuryadi, Y. Ishikawa, and M. Tabe, Phys. Rev. B 73, 045310 (2006).

    Article  ADS  Google Scholar 

  13. H. Ikeda, R. Nuryadi, Y. Ishikawa, and M. Tabe, Jpn. J. Appl. Phys. 43, 759 (2004).

    Article  ADS  Google Scholar 

  14. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, Appl. Phys. Lett. 79, 705 (2001).

    Article  ADS  Google Scholar 

  15. A. J. Shields, M. P. O’Sullivan, I. Farrer, D. A. Ritchie, M. L. Leadbeater, N. K. Patel, R. A. Hogg, C. E. Norman, N. J. Curson, and M. Pepper, Jpn. J. Appl. Phys. 40 (1, N3B), 2058 (2001).

    Article  ADS  Google Scholar 

  16. H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, E. Yablonovitch, and K. Makita, Phys. Rev. B 67, 045104 (2003).

    Article  ADS  Google Scholar 

  17. A. Fujiwara, Y. Takahashi, and K. Murase, Phys. Rev. Lett. 78, 1532 (1997).

    Article  ADS  Google Scholar 

  18. P. G. Collins, M. S. Fuhrer, and A. Zettl, Appl. Phys. Lett. 76, 894 (2000).

    Article  ADS  Google Scholar 

  19. D. Kingrey and P. G. Collins, in Proceedings of the 3rd SPIE Conference on Noise and Fluctuations, SPIE, Austin, TX, May 23–26, 2005 (SPIE, 2005).

    Google Scholar 

  20. K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant, Phys. Rev. Lett. 52, 228 (1984).

    Article  ADS  Google Scholar 

  21. M. J. Kirton and M. J. Uren, Adv. Phys. 38, 367 (1989).

    Article  ADS  Google Scholar 

  22. R. Nuryadi, H. Ikeda, Y. Ishikawa, and M. Tabe, Appl. Phys. Lett. 86, 133106 (2005).

    Article  ADS  Google Scholar 

  23. H. W. Ming et al., in Proceedings of the European Conference on Silicon Carbide and Related Materials, Oslo, Norway, August 29–September 2, 2010.

    Google Scholar 

  24. Yano Hiroshi et al., Appl. Phys. Lett. 81, 4772 (2002).

    Article  Google Scholar 

  25. D. M. Kim et al., Electron. Dev. IEEE Trans. 50, 1131 (2003).

    Article  ADS  Google Scholar 

  26. D. M. Kim, H. C. Kim, and H. T. Kim, Electron. Dev. IEEE Trans. 49, 526 (2002).

    Article  ADS  Google Scholar 

  27. Jae Gwang Um, M. Mativenga, P. Migliorato, and J. Jang, Appl. Phys. Lett. 101, 113504 (2012).

    Article  ADS  Google Scholar 

  28. Tzu-Yu Chen and Jenn-Gwo Hwu, ECS J. Solid State Sci. Technol. 3, Q37 (2014).

    Article  Google Scholar 

  29. E. H. Nicollian and J. R. Brews, Metal Oxide Semiconductor Physics and Technology (Wiley, New York, 1982).

    Google Scholar 

  30. M. Troudi, Na. Sghaier, A. Kalboussi, and A. Souifi, Opt. Express 18, 1 (2010).

    Article  ADS  Google Scholar 

  31. S. Chatbouri, M. Troudi, N. Sghaier, V. Aimez, D. Drouin, and A. Souifi, Semicond. Sci. Technol. 29, 085003 (2014).

    Article  ADS  Google Scholar 

  32. L. P. Kouwenhoven, S. Jauhar, K. McCormick, D. Dixon, P. L. McEuen, Y. V. Nazarov, N. C. van der Vaart, and C. T. Foxon, Phys. Rev. B 50, 2019 (1994).

    Article  ADS  Google Scholar 

  33. T. H. Ning, C. M. Osburn, and H. N. Yu, Appl. Phys. Lett. 26, 248 (1975).

    Article  ADS  Google Scholar 

  34. Himchan Oh, Sung-Min Yoon, Min Ki Ryu, Chi-Sun Hwang, Shinhyuk Yang, and Sang-Hee Ko Park, Appl. Phys. Lett. 98, 033504 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chatbouri.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatbouri, S., Troudi, M., Sghaier, N. et al. Direct exchange between silicon nanocrystals and tunnel oxide traps under illumination on single electron photodetector. Semiconductors 50, 1163–1167 (2016). https://doi.org/10.1134/S1063782616090062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616090062

Navigation