Skip to main content
Log in

Zinc-oxide-based nanostructured materials for heterostructure solar cells

  • Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Ali and D. J. Kang, Characterization and Reliability (Nova Science, New York, 2014), Vol. 2, p. 461.

    Google Scholar 

  2. I. A. Myasnikov, V. Ya. Sukharev, L. Yu. Kupriyanov, and S. A. Zav’yalov, Semiconductor Sensors in Physicochemical Investigations (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  3. C. F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide (Springer, Berlin, Heidelberg, 2010).

    Book  Google Scholar 

  4. M. W. Zhu, N. Huang, J. Gong, B. Zhang, Z. J. Wang, C. Sun, and X. Jiang, Appl. Phys. A 103, 159 (2011).

    Article  ADS  Google Scholar 

  5. J. Liu, W. Wu, S. Bai, and Y. Qin, ACS Appl. Mater. Interfaces 3, 4197 (2011).

    Article  Google Scholar 

  6. P. Feng, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 87, 2131111 (2005).

    Google Scholar 

  7. Z. L. Wang and J. H. Song, Science 312, 242 (2006).

    Article  ADS  Google Scholar 

  8. T. T. Pham, K. Y. Lee, J. H. Lee, K. H. Kim, K. S. Shin, M. K. Gupta, B. Kumar, and S. W. Kim, Energy Environ. Sci. 6, 841 (2013).

    Article  Google Scholar 

  9. J. Song, S. A. Kulinich, J. Yan, Z. Li, J. He, C. Kan, and H. Zeng, Adv. Mater. 25, 5750 (2013).

    Article  Google Scholar 

  10. K. Zheng, L. Gu, D. Sun, X. L. Mo, and G. Chen, Mater. Sci. Eng. B 166, 104 (2010).

    Article  Google Scholar 

  11. N. Vorobyeva, M. Rumyantseva, D. Filatova, E. Konstantinov, D. Grishin, A. Abakumov, S. Turner, and A. Gaskov, Sens. Actuators B 182, 555 (2013).

    Article  Google Scholar 

  12. J.-J. Delaunay, N. Kakoiyama, and I. Yamada, Mater. Chem. Phys. 104, 141 (2007).

    Article  Google Scholar 

  13. D. Gedami, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarchin, Y. K. Mishra, and R. Adelung, Adv. Mat. 26, 1541 (2014).

    Article  Google Scholar 

  14. N. P. Klochko, E. S. Klepikova, G. S. Khripunov, N. D. Volkova, V. R. Kopach, V. N. Lyubov, M. V. Kirichenko, and A. V. Kopach, Semiconductors 49, 214 (2015).

    Article  ADS  Google Scholar 

  15. V. A. Moshnikov, I. E. Gracheva, V. V. Kuznezov, A. I. Maximov, S. S. Karpova, and A. A. Ponomareva, J. Non-Cryst. Sol. 356, 2020 (2010).

    Article  ADS  Google Scholar 

  16. L. K. Krasteva, D. Ts. Dimitrov, K. I. Papazova, N. K. Nikolaev, T. V. Peshkova, V. A. Moshnikov, I. E. Gracheva, S. S. Karpova, and N. V. Kaneva, Semiconductors 47, 586 (2013).

    Article  ADS  Google Scholar 

  17. S. S. Karpova, V. A. Moshnikov, A. I. Maximov, S. V. Myakin, and N. E. Kazantseva, Semiconductors 47, 1026 (2013).

    Article  ADS  Google Scholar 

  18. S. S. Karpova, V. A. Moshnikov, S. V. Myakin, and E. S. Kolovangina, Semiconductors 47, 392 (2013).

    Article  ADS  Google Scholar 

  19. I. A. Pronin, N. V. Kaneva, A. S. Bozhinova, I. A. Averin, K. I. Papazova, D. Ts. Dimitrov, and V. A. Moshnikov, Kinet. Catal. 55, 167 (2014).

    Article  Google Scholar 

  20. N. V. Kaneva, D. T. Dimitrov, and C. D. Dushkin, Appl. Surf. Sci. 257, 8113 (2011).

    Article  ADS  Google Scholar 

  21. A. S. Bozhinova, N. V. Kaneva, I. E. Kononova, S. S. Nalimova, Sh. A. Syuleiman, K. I. Papazova, D. Ts. Dimitrov, V. A. Moshnikov, and E. I. Terukov, Semiconductors 47, 1636 (2013).

    Article  ADS  Google Scholar 

  22. C. Ge, C. Xie, and S. Cai, Mater. Sci. Eng. B 137, 53 (2007).

    Article  Google Scholar 

  23. B. Donkova, D. Dimitrov, M. Kostadinov, E. Mitkova, and D. Mehandjiev, Mater. Chem. Phys. 123, 563 (2010).

    Article  Google Scholar 

  24. I. A. Pronin, D. T. Dimitrov, L. K. Krasteva, K. J. Papazova, I. A. Averin, A. S. Chanachev, A. S. Bojinova, A. Ts. Georgieva, N. D. Yakusheva, and V. A. Moshnikov, Sens. Actuators A: Phys. 206, 88 (2014).

    Article  Google Scholar 

  25. M. C. Carotta, A. Cervi, V. di Natale, S. Gherardi, A. Giberti, V. Guidi, D. Puzzovio, B. Vendemiati, G. Martinelli, M. Sacerdoti, D. Calestani, A. Zappettini, M. Zha, and L. Zanotti, Sens. Actuators B 137, 164 (2009).

    Article  Google Scholar 

  26. A. S. Komolov, P. J. Moller, S. A. Komolov, E. F. Lazneva, and J. Mortensen, Surf. Sci. 586, 129 (2005).

    Article  ADS  Google Scholar 

  27. S. A. Komolov, E. F. Lazneva, and A. S. Komolov, Phys. Low Dim. Struct., Nos. 11–12, 211 (2001).

    Google Scholar 

  28. A. S. Komolov and Yu. G. Aliaev, Phys. Low Dim. Struct., Nos. 5–6, 37 (2001).

    Google Scholar 

  29. Y. Nakamura, H. Yoshioka, M. Miyayama, and H. Yanagida, J. Electrochem. Soc. 137, 940 (1990).

    Article  Google Scholar 

  30. B. M. Vermenichev, O. L. Lisitskii, M. E. Kumekov, S. E. Kumekov, E. I. Terukov, and S. Zh. Tokmoldin, Semiconductors 41, 288 (2007).

    Article  ADS  Google Scholar 

  31. O. L. Lisitskii, M. E. Kumekov, S. E. Kumekov, and E. I. Terukov, Semiconductors 43, 765 (2009).

    Article  ADS  Google Scholar 

  32. Sh. R. Adilov, M. E. Kumekov, S. E. Kumekov, and E. I. Terukov, Semiconductors 47, 655 (2013).

    Article  ADS  Google Scholar 

  33. A. I. Maximov, V. A. Moshnikov, Yu. M. Tairov, and O. A. Shilova, Principles of Sol-Gel Technology of Nanocomposites (Elmor, St.-Petersburg, 2007) [in Russian].

    Google Scholar 

  34. Bin Liu and Hua Chun Zeng, Nano Res. 2, 177 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Moshnikov.

Additional information

Original Russian Text © A.A. Bobkov, A.I. Maximov, V.A. Moshnikov, P.A. Somov, E.I. Terukov, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 10, pp. 1402–1406.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, A.A., Maximov, A.I., Moshnikov, V.A. et al. Zinc-oxide-based nanostructured materials for heterostructure solar cells. Semiconductors 49, 1357–1360 (2015). https://doi.org/10.1134/S1063782615100048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615100048

Keywords

Navigation