Skip to main content
Log in

Exchange enhancement of the electron g factor in strained InGaAs/InP heterostructures

  • XVIII Symposium “Nanophysics and Nanoelectronics”, Nizhni Novgorod, March 10–14, 2014
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The exchange enhancement of the electron g factor in strained InGaAs/InP heterostructures with a two-dimensional electron gas is studied. Analysis of the temperature dependence of the resistance in the minima of the Shubnikov-de Haas oscillations in perpendicular magnetic fields up to 12 T in the vicinity of the odd filling factors of the Landau levels yields the values of the effective electron Lande factor g* from −8.6 to −10.1. The experimental values are compared with the results of theoretical calculations of the g factor of quasiparticles. The calculations are performed using an eight-band k · p Hamiltonian and take into account exchange interaction in the two-dimensional electron gas. It is shown that, under the conditions of a large overlap between the spin-split Landau levels, the maximum value of the quasiparticle g factor can be attained in the vicinity of even filling factors. This is caused by the nonparabolicity of the electron dispersion relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. F. Fang and P. J. Stiles, Phys. Rev. 174, 823 (1968).

    Article  ADS  Google Scholar 

  2. S. Brosig, K. Ensslin, A. G. Jansen, C. Nguyen, B. Brar, M. Thomas, and H. Kroemer, Phys. Rev. B 61, 13045 (2000).

    Article  ADS  Google Scholar 

  3. V. N. Zverev, M. Muhammad, S. Rahman, P. Debray, M. Saglam, J. Sigmund, and H. L. Hartnage, J. Appl. Phys. 96, 6353 (2004).

    Article  ADS  Google Scholar 

  4. V. Ya. Aleshkin, V. I. Gavrilenko, A. V. Ikonnikov, S. S. Krishtopenko, Yu. G. Sadofyev, and K. E. Spirin, Semiconductors 42, 828 (2008).

    Article  ADS  Google Scholar 

  5. S. S. Krishtopenko, K. P. Kalinin, V. I. Gavrilenko, Yu. G. Sadofyev, and M. Goiran, Semiconductors 46, 1163 (2012).

    Article  ADS  Google Scholar 

  6. T. P. Smith, B. B. Goldberg, P. J. Stiles, and M. Heiblum, Phys. Rev. B 32, 2696 (1985).

    Article  ADS  Google Scholar 

  7. E. E. Mendez, H. Ohno, L. Esaki, and W. I. Wang, Phys. Rev. B 43, 5196 (1991).

    Article  ADS  Google Scholar 

  8. E. E. Mendez, J. Nocera, and W. I. Wang, Phys. Rev. B 47, 13937 (1993).

    Article  ADS  Google Scholar 

  9. E. Gornik, R. Lassnig, G. Strasser, H. L. Stormer, A. C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 54, 1820 (1985).

    Article  ADS  Google Scholar 

  10. J. K. Wang, J. H. Campbell, D. C. Tsui, and A. Y. Cho, Phys. Rev. B 38, 6174 (1988).

    Article  ADS  Google Scholar 

  11. J. K. Wang, D. C. Tsui, M. Santos, and M. Shayegan, Phys. Rev. B 45, 4384 (1992).

    Article  ADS  Google Scholar 

  12. H. B. Chan, P. I. Glicofridis, R. C. Ashoori, and M. R. Melloch, Phys. Rev. Lett. 79, 2867 (1997).

    Article  ADS  Google Scholar 

  13. O. E. Dial, R. C. Ashoori, L. N. Pfeiffer, and K. W. West, Nature (London) 448, 176 (2007).

    Article  ADS  Google Scholar 

  14. J. F. Janak, Phys. Rev. 178, 1416 (1969).

    Article  ADS  Google Scholar 

  15. T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 37, 1044 (1974).

    Article  ADS  Google Scholar 

  16. M. Califano, T. Chakraborty, P. Pietiläinen, and C.-M. Hu, Phys. Rev. B 73, 113315 (2006).

    Article  ADS  Google Scholar 

  17. M. J. Yang, P. J. Lin-Chung, B. V. Shanabrook, J. R. Waterman, R. J. Wagner, and W. J. Moore, Phys. Rev. B 47, 1691 (1993).

    Article  ADS  Google Scholar 

  18. A. Ikonnikov, S. Krishtopenko, V. Gavrilenko, Yu. Sadofyev, Yu. Vasilyev, M. Orlita, and W. Knap, J. Low Temp. Phys. 159, 197 (2010).

    Article  ADS  Google Scholar 

  19. V. I. Gavrilenko, S. S. Krishtopenko, and M. Goiran, Semiconductors 45, 110 (2011).

    Article  ADS  Google Scholar 

  20. K. E. Spirin, K. P. Kalinin, S. S. Krishtopenko, K. V. Maremyanin, V. I. Gavrilenko, and Yu. G. Sadofyev, Semiconductors 46, 1396 (2012).

    Article  ADS  Google Scholar 

  21. S. S. Krishtopenko, A. V. Ikonnikov, K. V. Maremyanin, K. E. Spirin, V. I. Gavrilenko, Yu. G. Sadofyev, M. Goiran, M. Sadowsky, and Yu. B. Vasilyev, J. Appl. Phys. 111, 093711 (2012).

    Article  ADS  Google Scholar 

  22. G. A. Khodaparast, R. C. Meyer, X. H. Zhang, T. Kasturiarachchi, R. E. Doezema, S. J. Chung, N. Goel, M. B. Santos, and Y. J. Wang, Physica E 20, 386 (2004).

    Article  ADS  Google Scholar 

  23. A. M. Gilbertson, W. R. Branford, M. Fearn, L. Buckle, P. D. Buckle, T. Ashley, and L. F. Cohen, Phys. Rev. B 79, 235333 (2009).

    Article  ADS  Google Scholar 

  24. Yu. B. Vasilyev, F. Gouider, G. Nachtwei, and P. D. Buckle, Semiconductors 44, 1511 (2010).

    Article  ADS  Google Scholar 

  25. F. Gouider, Yu. B. Vasilyev, M. Bugar, J. Konemann, P. D. Buckle, and G. Nachtwei, Phys. Rev. B 81, 155304 (2010).

    Article  ADS  Google Scholar 

  26. B. Rupprecht, S. Heedt, H. Hardtdegen, Th. Schäpers, Ch. Heyn, M. A. Wilde, and D. Grundler, Phys. Rev. B 87, 035307 (2013).

    Article  ADS  Google Scholar 

  27. S. S. Krishtopenko, V. I. Gavrilenko, and M. Goiran, J. Phys.: Condens. Matter 24, 252201 (2012).

    ADS  Google Scholar 

  28. S. S. Krishtopenko, J. Phys.: Condens. Matter 25, 105601 (2013).

    ADS  Google Scholar 

  29. S. S. Krishtopenko, V. I. Gavrilenko, and M. Goiran, Phys. Rev. B 87, 155113 (2013).

    Article  ADS  Google Scholar 

  30. S. S. Krishtopenko, J. Phys.: Condens. Matter 25, 365602 (2013).

    Google Scholar 

  31. D. L. Vehse, S. G. Hummel, H. M. Cox, F. De Rosa, and S. J. Allen, Jr., Phys. Rev. B 33, 5862 (1986).

    Article  ADS  Google Scholar 

  32. I. G. Savel’ev, A. M. Kreshchuk, S. V. Novikov, A. Y. Shik, G. Remenyi, Gy. Kovács, B. Pôdörk, and G. Gombos, J. Phys.: Condens. Matter 8, 9025 (1996).

    ADS  Google Scholar 

  33. J. C. Portal, R. J. Nicholas, M. A. Brummell, M. Razeghi, and M. A. Poisson, Appl. Phys. Lett. 43, 293 (1983).

    Article  ADS  Google Scholar 

  34. S. Koch, R. J. Haug, K. v. Klitzing, and M. Razeghi, Phys. Rev. B 47, 4048 (1993).

    Article  ADS  Google Scholar 

  35. S. S. Krishtopenko, V. I. Gavrilenko, and M. Goiran, J. Phys.: Condens. Matter 23, 385601 (2011).

    ADS  Google Scholar 

  36. S. S. Krishtopenko, V. I. Gavrilenko, and M. Goiran, Solid State Phenom. 190, 554 (2012).

    Article  Google Scholar 

  37. S. S. Krishtopenko, V. I. Gavrilenko, and M. Goiran, J. Phys.: Condens. Matter 24, 135601 (2012).

    ADS  Google Scholar 

  38. G. R. Johnson, A. Kanaah, B. C. Cavenett, M. S. Skolnick, and S. J. Bass, Semicond. Sci. Technol. 2, 182 (1987).

    Article  ADS  Google Scholar 

  39. M. Dobers, J. P. Vieren, Y. Guldner, P. Bove, F. Omnes, and M. Razeghi, Phys. Rev. B 40, 8075 (1989).

    Article  ADS  Google Scholar 

  40. B. Kowalski, P. Omling, B. K. Meyer, D. M. Hofmann, C. Wetzel, V. Härlex, F. Scholz, and P. Sobkowicz, Phys. Rev. B 49, 14786 (1994).

    Article  ADS  Google Scholar 

  41. B. Kowalski, P. Omling, B. K. Meyer, D. M. Hofmann, V. Härlex, F. Scholz, and P. Sobkowicz, Semicond. Sci. Technol. 11, 1416 (1996).

    Article  ADS  Google Scholar 

  42. K. P. Kalinin, S. S. Krishtopenko, K. V. Maremyanin, K. E. Spirin, V. I. Gavrilenko, A. A. Biryukov, N. V. Baidus, and B. N. Zvonkov, Semiconductors 47, 1485 (2013).

    Article  ADS  Google Scholar 

  43. C. Wetzel, R. Winkler, M. Drechsler, B. K. Meyer, U. Rössler, J. Scriba, J. P. Kotthaus, V. Härle, and F. Scholz, Phys. Rev. B 53, 1038 (1996).

    Article  ADS  Google Scholar 

  44. G. Engels, J. Lange, Th. Schäpers, and H. Lüth, Phys. Rev. B 55, 1958 (1997).

    Article  ADS  Google Scholar 

  45. S. A. Studenikin, G. Granger, A. Kam, A. S. Sachrajda, Z. R. Wasilewski, and P. J. Poole, Phys. Rev. B 86, 115309 (2012).

    Article  ADS  Google Scholar 

  46. A. Isihara and L. Smrcka, J. Phys. C 19, 6777 (1986).

    Article  ADS  Google Scholar 

  47. P. T. Coleridge, Phys. Rev. B 44, 3793 (1991).

    Article  ADS  Google Scholar 

  48. Y.-W. Tan, J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 94, 016405 (2005).

    Article  ADS  Google Scholar 

  49. N. A. Kabir, Y. Yoon, J. R. Knab, J.-Y. Chen, A. G. Markelz, J. L. Reno, Y. Sadofyev, S. Johnson, Y.-H. Zhang, and J. P. Bird, Appl. Phys. Lett. 89, 132109 (2006).

    Article  ADS  Google Scholar 

  50. A. Usher, R. J. Nicholas, J. J. Harris, and C. T. Foxon, Phys. Rev. B 41, 1129 (1990).

    Article  ADS  Google Scholar 

  51. P. T. Coleridge, R. Stoner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989).

    Article  ADS  Google Scholar 

  52. A. Endo and Y. Iye, J. Phys. Soc. Jpn. 77, 064713 (2008).

    Article  ADS  Google Scholar 

  53. T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974).

    Article  ADS  Google Scholar 

  54. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  55. C. Weisbuch and C. Hermann, Solid State Commun. 16, 659 (1975).

    Article  ADS  Google Scholar 

  56. J. Beerens, C. J. Miner, and N. Puetz, Semicond. Sci. Technol. 10, 1233 (1995).

    Article  ADS  Google Scholar 

  57. B. Kowalski, H. Linke, and P. Omling, Phys. Rev. B 54, 8551 (1996).

    Article  ADS  Google Scholar 

  58. S. Charlebois, J. Beerens, C. J. Miner, and N. Puetz, Phys. Rev. B 54, 13456 (1996).

    Article  ADS  Google Scholar 

  59. S. R. E. Yang, A. H. MacDonald, and B. Huckestein, Phys. Rev. Lett. 74, 3229 (1995).

    Article  ADS  Google Scholar 

  60. A. A. Greshnov and G. G. Zegrya, Semiconductors 41, 1329 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Maremyanin.

Additional information

Original Russian Text © S.S. Krishtopenko, K.V. Maremyanin, K.P. Kalinin, K.E. Spirin, V.I. Gavrilenko, N.V. Baidus, B.N. Zvonkov, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 2, pp. 196–203.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishtopenko, S.S., Maremyanin, K.V., Kalinin, K.P. et al. Exchange enhancement of the electron g factor in strained InGaAs/InP heterostructures. Semiconductors 49, 191–198 (2015). https://doi.org/10.1134/S1063782615020141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615020141

Keywords

Navigation