Skip to main content
Log in

Recent Developments in EPOS: Core–Corona Effects in Air Showers?

  • Elementary Particles and Fields/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

EPOS-LHC is the public EPOS version, heavily used by experimental groups in high energy and cosmic ray physics. It is based on an S-matrix approach, being the ideal framework for multiple scattering in small systems. However, factorization and binary scaling do not come for free, it is a very complex issue, and in the current model it is simply not properly done. Another topic concerns flow, which is only implemented as ‘‘parameterized,’’ with is quite a limited applications. There was substantial progress during the past few years, referred to as ‘‘EPOS4 project,’’ to develop a consistent formalism, which accommodates a multiple scattering S-matrix approach, factorization, and saturation, all of these topics being closely related to each other. In addition, secondary interactions are considered, most importantly a full hydrodynamic evolution. In this talk, we will report about the status of the EPOS4 project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. CMS Collab., arXiv: 1307.3442; Eur. Phys. J. C 74, 2847 (2014).

    Article  ADS  Google Scholar 

  2. ALICE Collab., arXiv: 1307.6796; Phys. Lett. B 728, 25 (2014).

    Article  ADS  Google Scholar 

  3. H. J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, and K. Werner, Phys. Rep. 350, 93 (2001).

    Article  ADS  Google Scholar 

  4. K. Werner, Lecture Notes. https://hal.archives-ouvertes.fr/hal-02434245

  5. Yu. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

    ADS  Google Scholar 

  6. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

    Google Scholar 

  7. G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).

    Article  ADS  Google Scholar 

  8. K. Werner, Phys. Rev. Lett. 98, 152301 (2007).

    Article  ADS  Google Scholar 

  9. B. Abelev et al. (ALICE Collab.), Phys. Rev. C 88, 044910 (2013).

    Article  ADS  Google Scholar 

  10. B. Abelev et al. (ALICE Collab.), Phys. Rev. Lett. 111, 222301 (2013).

    Article  ADS  Google Scholar 

  11. ALICE Collab., Phys. Lett. B 728, 216 (2014).

    Article  ADS  Google Scholar 

  12. J. Adam et al. (ALICE Collab.), Eur. Phys. J. C 76, 245 (2016).

    Article  ADS  Google Scholar 

  13. ALICE Collab., Phys. Lett. B 758, 389 (2016).

    Article  ADS  Google Scholar 

  14. K. Aamodt et al. (ALICE Collab.), Eur. Phys. J. C 68, 345 (2010).

    Article  ADS  Google Scholar 

  15. J. Adam et al. (ALICE Collab.), Eur. Phys. J. C 75, 226 (2015).

    Article  ADS  Google Scholar 

  16. B. Abelev et al. (ALICE Collab.), Phys. Lett. B 712, 309 (2012).

    Article  ADS  Google Scholar 

  17. S. Baur, H. Dembinski, M. Perlin, T. Pierog, R. Ulrich, and K. Werner, arXiv: 1902.09265v2.

  18. F. Becattini and L. Ferroni, Eur. Phys. J. C 35, 243 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Werner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, K., Pierog, T., Guiot, B. et al. Recent Developments in EPOS: Core–Corona Effects in Air Showers?. Phys. Atom. Nuclei 84, 1026–1029 (2021). https://doi.org/10.1134/S106377882113041X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882113041X

Navigation