Skip to main content
Log in

Baryon deceleration and partonic plasma creation by strong chromofields in ultrarelativistic heavy-ion collisions

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Strong chromofields generated at early stages of ultrarelativistic nuclear collisions may explain not only creation of the quark-gluon plasma but also collective deceleration of net baryons. This is demonstrated by solving classical equations of motion for baryonic slabs under the action of a time-dependent chromofield. We have studied sensitivity of the slab trajectories and their final rapidities to the initial strength and decay time of the chromofield, as well as to the back reaction of the produced plasma. By proper choice of the initial chromofield energy density we can reproduce significant baryon stopping, an average rapidity loss of about two units, observed for Au + Au collisions at RHIC. Using a Bjorken-like hydrodynamical model with the particle production source, we also study the evolution of partonic plasma produced as the result of the chromofield decay. Due to the delayed formation and expansion of plasma its maximum energy density is significantly lower than the initial energy density of the chromofield. It is shown that the fluctuations of the chromofield due to the stochastic distribution of color charges help to populate the midrapidity region in the net-baryon distribution. To fit the midrapidity data we need the chromofields with initial energy densities in the range of 30 to 60 GeV/fm3. Predictions of baryon stopping for Pb + Pb collisions at LHC energies are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Mishustin and K. A. Lyakhov, Phys. Rev. C 76, 011603(R) (2007).

    Article  ADS  Google Scholar 

  2. A. Casher, H. Neuberger, and S. Nussinov, Phys.Rev. D 20, 179 (1979); N. K. Glendenning and T. Matsui, Nucl. Phys. B 141, 419 (1984); article K. Kajantie and T. Matsui, Phys. Lett. B 164, 373 (1985); M. Gyulassy and A. Iwazaki, Phys. Lett. B 165, 157 (1985).

    Article  ADS  Google Scholar 

  3. L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233, 3352 (1994); Phys. Rev.D 50, 2225 (1994); Phys. Rev. D 59, 094002 (1999); hep-ph/0202270.

    Article  ADS  Google Scholar 

  4. L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. 100, 1 (1983); article D. Kharzeev, E. Levin, and K. Tuchin, Phys. Rev. C 75, 044903 (2007).

    Article  ADS  Google Scholar 

  5. J. Schwinger, Phys. Rev. 82, 664 (1951); F. Sauter, Z. Phys. 69, 742 (1931); W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. G. Gatoff, A. K. Kerman, and T. Matsui, Phys. Rev. D 36, 114 (1987).

    Article  ADS  Google Scholar 

  7. K. J. Eskola and M. Gulassy, Phys. Rev. C 47 2329 (1993).

    Article  ADS  Google Scholar 

  8. L. Wilets and R. D. Puff, Phys. Rev. C 51, 339 (1995).

    Article  ADS  Google Scholar 

  9. A. Kovner, L. D. McLerran, and H. Weigert, Phys. Rev. D 52, 3809, 6231 (1995).

    Article  ADS  Google Scholar 

  10. S. Jeon and R. Venugopalan, Phys. Rev.D 70, 105012 (2004).

    Article  ADS  Google Scholar 

  11. M. Gyulassy and L. McLerran, Phys. Rev. C 56, 2219 (1997).

    Article  ADS  Google Scholar 

  12. G. Gatoff, A. K. Kerman, and D. Vautherin, Phys. Rev. D 38, 96 (1988).

    Article  ADS  Google Scholar 

  13. I. G. Bearden et al. (BRAHMS Collab.), Phys. Rev. Lett. 93, 102301 (2004).

    Article  ADS  Google Scholar 

  14. S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998).

    Article  ADS  Google Scholar 

  15. N. S. Amelin, N. Armesto, C. Pajares, and D. Souza, Eur. Phys. J. C 22, 149 (2001).

    Article  ADS  Google Scholar 

  16. K. Itakura, Yu. V. Kovchegov, L. McLerran, and D. Teaney, Nucl. Phys. A 730, 160 (2004).

    Article  ADS  Google Scholar 

  17. S. A. Bass et al., Phys. Rev. Lett. 91, 052302 (2003).

    Article  ADS  Google Scholar 

  18. I. N. Mishustin and J. I. Kapusta, Phys. Rev. Lett. 88, 112501 (2002).

    Article  ADS  Google Scholar 

  19. V. K. Magas, L. P. Csernai, and D. Strottman, Nucl. Phys. A 712, 167 (2002).

    Article  ADS  Google Scholar 

  20. Yu. B. Ivanov, I. N. Mishustin, and L. M. Satarov, Nucl. Phys. A 433, 713 (1985).

    Article  ADS  Google Scholar 

  21. C.-Y. Wong, Introduction to High-Energy Heavy-Ion Collisions (World Sci., Singapore, 1994), p. 249.

    Book  Google Scholar 

  22. H. B. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973).

    Article  ADS  Google Scholar 

  23. G. S. Bali, C. Schlichter, and K. Schilling, Phys. Rev. D 51, 5165 (1995).

    Article  ADS  Google Scholar 

  24. R. W. Haymaker, V. Singh, Y. Peng, and J. Wosiek, Phys. Rev. D 53, 389 (1996).

    Article  ADS  Google Scholar 

  25. N. Armesto, M. A. Braun, E. G. Ferreiro, and C. Pajares, Phys. Rev. Lett. 77, 3736 (1996).

    Article  ADS  Google Scholar 

  26. S. Fortunato, F. Karsch, P. Petreczky, and H. Satz, Phys. Lett. B 502, 321 (2001).

    Article  ADS  MATH  Google Scholar 

  27. M. A. Braun, F. del Moral, and C. Pojares, Phys. Rev. C 65, 024907 (2002).

    Article  ADS  Google Scholar 

  28. K. Werner, Phys. Rev. Lett. 98, 152301 (2007).

    Article  ADS  Google Scholar 

  29. L. D. Landau and I. M. Lifshits, The Field Theory (Plenum, Oxford, 1964).

    Google Scholar 

  30. P. Goddard, J. Goldstone, C. Rebbi, and C. B. Thorn, Nucl. Phys. B 56, 109 (1973).

    Article  ADS  Google Scholar 

  31. G. Martens, C. Greiner, S. Leupold, and U. Mosel, Phys. Rev. D 70, 116010 (2004).

    Article  ADS  Google Scholar 

  32. D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001).

    Article  ADS  Google Scholar 

  33. V. Topor Pop, M. Gyulassy, J. Barrette, et al., Phys. Rev. C 75, 014904 (2007).

    Article  ADS  Google Scholar 

  34. R.-C. Wang and C.-Y. Wong, Phys. Rev. D 38, 348 (1988).

    Article  ADS  Google Scholar 

  35. C. Martin and D. Vautherin, Phys. Rev. D 38, 3593 (1988).

    Article  ADS  Google Scholar 

  36. F. Gelis, K. Kajantie, and T. Lappi, Phys. Rev. C 71, 024904 (2005).

    Article  ADS  Google Scholar 

  37. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong External Fields (Atomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  38. V. V. Skokov and P. Lévai, Phys. Rev. D 71, 094010 (2005).

    Article  ADS  Google Scholar 

  39. E. Kolb and M. Turner, The Early Universe (Addison-Wesley, Redwood City, CA, 1990).

    Google Scholar 

  40. J. Bjorken, Phys. Rev. D 27, 140 (1983).

    Article  ADS  Google Scholar 

  41. R. J. Fries, J. I. Kapusta, and Y. Li, Nucl. Phys. A 774, 861 (2006).

    Article  ADS  Google Scholar 

  42. W. H. Press et al., Numerical Recipes in Fortran (Cambridge Univ. Press, Cambridge, 1988), p. 151.

    Google Scholar 

  43. A. Bialas, W. Czyz, A. Dyrek, and W. Florkowski, Z. Phys. C 46, 439 (1990).

    Article  Google Scholar 

  44. B. Andersson, G. Gustafson, G. Ingelman, and T. Sjöstrand, Phys. Rep. 97, 31 (1983).

    Article  ADS  Google Scholar 

  45. Z. Xu and C. Greiner, Phys. Rev. C 71, 064901 (2005).

    Article  ADS  Google Scholar 

  46. J. I. Kapusta and Ch. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge Univ. Press, Cambridge, 2006).

    Book  MATH  Google Scholar 

  47. L. P. Csernai, Introduction to Relativistic Heavy Ion Collisions (Wiley, New York, 1994), p. 88.

    Google Scholar 

  48. M. G. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B 422, 247 (1998).

    Article  ADS  Google Scholar 

  49. G. Wolschin, Phys. Rev. C 69, 024906 (2004)

    Article  ADS  Google Scholar 

  50. F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).

    Article  ADS  Google Scholar 

  51. D. Kharzeev and E. Levin, Phys. Lett. B 523, 79 (2001).

    Article  ADS  Google Scholar 

  52. T. Hirano and Y. Nara, J. Phys. G 31, S1 (2005).

    Article  ADS  Google Scholar 

  53. L. M. Satarov, A. V. Merdeev, I. M. Mishustin, and H. Stöcker, Phys. Rev. C 75, 024903 (2007); Phys. At. Nucl. 70, 1773 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Mishustin.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishustin, I.N., Lyakhov, K.A. Baryon deceleration and partonic plasma creation by strong chromofields in ultrarelativistic heavy-ion collisions. Phys. Atom. Nuclei 75, 371–392 (2012). https://doi.org/10.1134/S1063778812030131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778812030131

Keywords

Navigation