Skip to main content
Log in

Polymer dynamics in chaotic flows with a strong shear component

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the dynamics of a polymer molecule injected into a chaotic flow with a strong mean shear component. The polymer experiences aperiodic tumbling in such flows. We consider a simplified model of the chaotic velocity field given by the superposition of a steady shear flow and a large-scale isotropic short-correlated random component. In the framework of this model, we present a detailed study of the statistical properties of single-polymer dynamics. We obtain the stationary probability distribution function of the polymer orientation, find the distribution of time periods between consequent events of tumbling, and find the tails of the polymer size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Toms, in Proceedings of the International Congress of Rheology, Holland, 1948 (North-Holland, Amsterdam, 1949), p. II–135.

    Google Scholar 

  2. J. L. Lumley, Annu. Rev. Fluid Mech. 1, 367 (1969); J. Polym. Sci., Part D: Macromol. Rev. 7, 263 (1973).

    Article  ADS  Google Scholar 

  3. J. L. Lumley, Symp. Math. 9, 315 (1972).

    Google Scholar 

  4. A. Groisman and V. Steinberg, Nature 405, 53 (2000); Phys. Rev. Lett. 86, 934 (2001).

    Article  ADS  Google Scholar 

  5. A. Groisman and V. Steinberg, New J. Phys. 6, 29 (2004).

    Article  ADS  Google Scholar 

  6. E. Balkovsky, A. Fouxon, and V. Lebedev, Phys. Rev. Lett. 84, 4765 (2000); Phys. Rev. E 64, 056301 (2001).

    Article  ADS  Google Scholar 

  7. M. Chertkov, Phys. Rev. Lett. 84, 4761 (2000).

    Article  ADS  Google Scholar 

  8. A. Fouxon and V. Lebedev, Phys. Fluids 15, 2060 (2003).

    Article  ADS  Google Scholar 

  9. P. G. de Gennes, J. Chem. Phys. 60, 5030 (1974).

    Article  Google Scholar 

  10. T. T. Perkins, D. E. Smith, and S. Chu, Science 276, 2016 (1997).

    Article  Google Scholar 

  11. D. E. Smith and S. Chu, Science 281, 1335 (1998).

    Article  ADS  Google Scholar 

  12. D. E. Smith, H. P. Babcock, and S. Chu, Science 283, 1724 (1999).

    Article  ADS  Google Scholar 

  13. J. S. Hur, E. Shaqfeh, H. P. Babcock, et al., J. Rheol. 45, 421 (2001).

    Article  ADS  Google Scholar 

  14. S. Gerashchenko, C. Chevallard, and V. Steinberg, Europhys. Lett. 71, 221 (2005).

    Article  ADS  Google Scholar 

  15. R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  16. A. Celani, A. Puliafito, and K. Turitsyn, Europhys. Lett. 70, 439 (2005).

    Article  Google Scholar 

  17. A. Puliafito and K. Turitsyn, Physica D (Amsterdam) 211, 9 (2005).

    MATH  ADS  MathSciNet  Google Scholar 

  18. R. E. Teixeira, H. P. Babcock, E. Shaqfeh, and S. Chu, Macromolecules 38, 581 (2005).

    Article  Google Scholar 

  19. J. S. Hur, E. Shaqfeh, and R. G. Larson, J. Rheol. 44, 713 (2000).

    Article  ADS  Google Scholar 

  20. M. Chertkov, I. Kolokolov, V. Lebedev, and K. Turitsyn, J. Fluid Mech. 531, 251 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. E. J. Hinch and L. G. Leal, J. Fluid Mech. 52, 683 (1972).

    Article  MATH  ADS  Google Scholar 

  22. G. K. Batchelor, J. Fluid Mech. 5, 113 (1959).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. R. H. Kraichnan, Phys. Fluids 10, 1417 (1967); J. Fluid Mech. 47, 525 (1971); J. Fluid Mech. 67, 155 (1975).

    Article  Google Scholar 

  24. G. Falkovich, C. Gawedzky, and M. Vergassola, Rev. Mod. Phys. 73, 913 (2001).

    Article  ADS  Google Scholar 

  25. E. J. Hinch, Phys. Fluids 20, S22 (1977).

    Article  ADS  Google Scholar 

  26. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1987).

    Google Scholar 

  27. A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).

    Google Scholar 

  28. R. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer, Berlin, 1985).

    MATH  Google Scholar 

  29. E. Balkovsky and A. Fouxon, Phys. Rev. E 60, 4164 (1999).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Turitsyn.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turitsyn, K.S. Polymer dynamics in chaotic flows with a strong shear component. J. Exp. Theor. Phys. 105, 655–664 (2007). https://doi.org/10.1134/S1063776107090245

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107090245

PACS numbers

Navigation