Skip to main content
Log in

SRGz: Machine Learning Methods and Properties of the Catalog of SRG/eROSITA Point X-ray Source Optical Counterparts in the DESI Legacy Imaging Surveys Footprint

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We describe the methods of the SRGz system for the physical identification of eROSITA point X-ray sources from photometric data in the DESI Legacy Imaging Surveys footprint. We consider the models included in the SRGz system (version 2.1) that have allowed us to obtain accurate measurements of the cosmological redshift and class of an X-ray object (quasar/galaxy/star) from multiwavelength photometric sky surveys (DESI LIS, SDSS, Pan-STARRS, WISE, eROSITA) for 87\({\%}\) of the entire eastern extragalactic region (\(0^{\circ}<l<180^{\circ}\), \(|b|>20^{\circ}\)). An important feature of the SRGz system is that its data handling model (identification, classification, photo-z algorithms) is based entirely on heuristic machine learning approaches. For a standard choice of SRGz parameters the optical counterpart identification completeness (recall) in the DESI LIS footprint is \(95{\%}\) (with an optical counterpart selection precision of \(94{\%}\)); the classification completeness (recall) of X-ray sources without optical counterparts in DESI LIS is \(82{\%}\) (\(85{\%}\) precision). A high quality of the photometric classification of X-ray source optical counterparts is achieved in SRGz: \({>}99{\%}\) photometric classification completeness (recall) for extragalactic objects (a quasar or a galaxy) and stars on a test sample of sources with SDSS spectra and GAIA astrometric stars. We present an analysis of the importance of various photometric features for the optical identification and classification of eROSITA X-ray sources. We have shown that the infrared (IR) magnitude \(W_{2}\), the X-ray/optical(IR) ratios, the optical colors (for example, \((g-r)\)), and the IR color (\(W_{1}-W_{2}\)) as well as the color distances introduced by us play a significant role in separating the classes of X-ray objects. We use the most important photometric features to interpret the SRGz predictions in this paper. The accuracy of the SRGz photometric redshifts (from DESI LIS, SDSS, Pan-STARRS, and WISE photometric data) has been tested in the Stripe82X field on a sample of 3/4 of the optical counterparts of eROSITA point X-ray sources (for which spectroscopic measurements are available in Stripe82X): \(\sigma_{NMAD}=3.1{\%}\) (the normalized median absolute deviation of the prediction) and \(n_{>0.15}=7.8{\%}\) (the fraction of catastrophic outliers). The presented photo-z results for eROSITA X-ray sources in the Stripe82X field are more than a factor of 2 better in both metrics (\(\sigma_{NMAD}\) and \(n_{>0.15}\)) than the photo-z results of other groups published in the Stripe82X catalog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Notes

  1. The Russian eROSITA Consortium is responsible for analyzing the eROSITA data in the eastern half of the sky (in Galactic coordinates).

  2. http://xmmssc.irap.omp.eu/Catalogue/4XMM-DR12/ 4XMM_DR12.html

  3. https://cdsarc.cds.unistra.fr/viz-bin/cat/IX/57

  4. https://www.legacysurvey.org/dr9/description/

  5. https://www.srg.cosmos.ru/srgz2023

  6. https://github.com/catboost/benchmarks/tree/master/quality_benchmarks

  7. https://www.srg.cosmos.ru/srgz2023

REFERENCES

  1. Abdurro’uf, K. Accetta, C. Aerts, V. Silva Aguirre, R. Ahumada, N. Ajgaonkar, et al., Astrophys. J. Suppl. Ser. 259, 35 (2022).

    Article  ADS  Google Scholar 

  2. B. Abolfathi, D. S. Aguado, G. Aguilar, C. Allende Prieto, A. Almeida, T. T. Ananna, et al., Astrophys. J. Suppl. Ser. 235, 42 (2018).

    Article  ADS  Google Scholar 

  3. T. T. Ananna, M. Salvato, S. LaMassa, C. M. Urry, N. Cappelluti, C. Cardamone, et al., Astrophys. J. 850, 66 (2017).

    Article  ADS  Google Scholar 

  4. S. O. Arik and T. Pfister, arXiv: 1908.07442 (2019).

  5. D. Bashtannyk and R. Hyndman, Comput. Stat. Data Anal. 36, 279 (2001).

    Article  Google Scholar 

  6. M. I. Belvedersky, A. V. Meshcheryakov, P. S. Medvedev, and M. R. Gilfanov, Astron. Lett. 48, 109 (2022).

    Article  ADS  Google Scholar 

  7. I. F. Bikmaev, E. N. Irtuganov, E. A. Nikolaeva, N. A. Sakhibullin, R. I. Gumerov, A. S. Sklyanov, et al., Astron. Lett. 46, 645 (2020).

    Article  ADS  Google Scholar 

  8. I. F. Bikmaev, E. N. Irtuganov, E. A. Nikolaeva, N. A. Sakhibullin, R. I. Gumerov, A. S. Sklyanov, et al., Astron. Lett. 47, 277 (2021).

    Article  ADS  Google Scholar 

  9. C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, New York, 2007).

    Google Scholar 

  10. A. S. Bolton, D. J. Schlegel, É. Aubourg, S. Bailey, V. Bhardwaj, J. R. Brownstein, et al., Astron. J. 144, 144 (2012).

    Article  ADS  Google Scholar 

  11. V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci, arXiv: 2110.01889 (2021).

  12. V. Borisov, A. Meshcheryakov, and S. Gerasimov, ASP Conf. Ser. 532, 231 (2022).

  13. L. Breiman, Machine Learn. 45, 5 (2001).

    Article  Google Scholar 

  14. M. Brescia, S. Cavuoti, and G. Longo, Mon. Not. R. Astron. Soc. 450, 3893 (2015).

    Article  ADS  Google Scholar 

  15. M. Brescia, M. Salvato, S. Cavuoti, T. T. Ananna, G. Riccio, S. M. LaMassa, et al., Mon. Not. R. Astron. Soc. 489, 663 (2019).

    Article  ADS  Google Scholar 

  16. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, et al. (Gaia Collab.), Astron. Astrophys. 616, A1 (2018).

    Google Scholar 

  17. R. A. Burenin, Astron. Lett. 48, 153 (2022).

    Article  ADS  Google Scholar 

  18. S. D. Bykov, M. I. Belvedersky, and M. R. Gilfanov, arXiv: 2302.13689 (2023).

  19. M. Carrasco Rind and R. J. Brunner, Mon. Not. R. Astron. Soc. 432, 1483 (2013).

    Article  ADS  Google Scholar 

  20. S. Cavuoti, V. Amaro, M. Brescia, C. Vellucci, C. Tortora, and G. Longo, Mon. Not. R. Astron. Soc. 465, 1959 (2017).

    Article  ADS  Google Scholar 

  21. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z. Waters, et al., arXiv: 1612.05560 (2016).

  22. A. Dey, D. J. Schlegel, D. Lang, R. Blum, K. Burleigh, X. Fan, et al., Astron. J. 157, 168 (2019).

    Article  ADS  Google Scholar 

  23. A. V. Dodin, S. A. Potanin, N. I. Shatsky, A. A. Belinski, K. E. Atapin, M. A. Burlak, et al., Astron. Lett. 46, 429 (2020).

    Article  ADS  Google Scholar 

  24. A. V. Dodin, N. I. Shatsky, A. A. Belinski, K. E. Atapin, M. A. Burlak, S. G. Zheltoukhov, et al., Astron. Lett. 47, 661 (2021).

    Article  ADS  Google Scholar 

  25. J. E. Drew, E. Gonzalez-Solares, R. Greimel, M. J. Irwin, A. KüpcüYoldas, J. Lewis, et al., Mon. Not. R. Astron. Soc. 440, 2036 (2014).

    Article  ADS  Google Scholar 

  26. I. N. Evans, F. A. Primini, K. J. Glotfelty, C. S. Anderson, N. R. Bonaventura, J. C. Chen, et al., Astrophys. J. Suppl. Ser. 189, 37 (2010).

    Article  ADS  Google Scholar 

  27. P. A. Evans, K. L. Page, J. P. Osborne, A. P. Beardmore, R. Willingale, D. N. Burrows, et al., Astrophys. J. Suppl. Ser. 247, 54 (2020).

    Article  ADS  Google Scholar 

  28. T. Fawcett, Pattern Recogn. Lett. 27, 861 (2006).

    Article  ADS  Google Scholar 

  29. J. H. Friedman, Ann. Stat. 29, 1189–1232 (2001).

    Article  Google Scholar 

  30. M. R. Gil’fanov et al., Astron. Lett. (2023, in press).

  31. C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, arXiv: 1706.04599 (2017).

  32. J. A. Hanley and B. J. McNeil, Radiology 143, 29 (1982).

    Article  Google Scholar 

  33. R. Izbicki and A. B. Lee, arXiv: 1704.08095 (2017).

  34. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, et al., in Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17 (Curran Assoc., Red Hook, NY, 2017), p. 3149.

  35. G. A. Khorunzhev, A. V. Meshcheryakov, R. A. Burenin, A. R. Lyapin, P. S. Medvedev, S. Y. Sazonov, et al., Astron. Lett. 46, 149 (2020).

    Article  ADS  Google Scholar 

  36. G. A. Khorunzhev, A. V. Meshcheryakov, P. S. Medvedev, V. D. Borisov, R. A. Burenin, R. A. Krivonos, et al., Astron. Lett. 47, 123 (2021).

    Article  ADS  Google Scholar 

  37. G. A. Khorunzhev, S. N. Dodonov, A. V. Meshcheryakov, A. V. Moiseev, A. Grokhovskaya, S. S. Kotov, et al., Astron. Lett. 48, 69 (2022).

    Article  ADS  Google Scholar 

  38. S. M. Lamassa, C. M. Urry, N. Cappelluti, H. Böhringer, A. Comastri, E. Glikman, et al., Astrophys. J. 817, 172 (2016).

    Article  ADS  Google Scholar 

  39. C. Li, Y. Zhang, C. Cui, D. Fan, Y. Zhao, X.-B. Wu, et al., Mon. Not. R. Astron. Soc. 518, 513 (2023).

    Article  ADS  Google Scholar 

  40. Y. Lin and Y. Jeon, J. Am. Stat. Assoc. 101, 578 (2006).

    Article  Google Scholar 

  41. R. Lomotey and R. Deters, in Proceedings of the IEEE 8th International Symposium on Service Oriented System Engineering, SOSE 2014, April 7–11, 2014 (IEEE Comput. Soc., 2014) p. 181.

  42. S. M. Lundberg and S.-I. Lee, in Advances in Neural Information Processing Systems 30, Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Curran Assoc., 2017), p. 4765.

    Google Scholar 

  43. B. W. Lyke, A. N. Higley, J. N. McLane, D. P. Schurhammer, A. D. Myers, A. J. Ross, et al., Astrophys. J. Suppl. Ser. 250, 8 (2020).

    Article  ADS  Google Scholar 

  44. T. Maccacaro, I. M. Gioia, A. Wolter, G. Zamorani, and J. T. Stocke, Astrophys. J. 326, 680 (1988).

    Article  ADS  Google Scholar 

  45. A. Mainzer, J. Bauer, T. Grav, J. Masiero, R. M. Cutri, J. Dailey, et al., Astrophys. J. 731, 53 (2011).

    Article  ADS  Google Scholar 

  46. P. S. Medvedev et al., Astron. Lett. (2022, in press).

  47. N. Meinshausen, J. Mach. Learn. Res. 7, 983 (2006).

    MathSciNet  Google Scholar 

  48. M. L. Menzel, A. Merloni, A. Georgakakis, M. Salvato, E. Aubourg, W. N. Brandt, et al., Mon. Not. R. Astron. Soc. 457, 110 (2016).

    Article  ADS  Google Scholar 

  49. A. V. Meshcheryakov, V. V. Glazkova, S. V. Gerasimov, and I. V. Mashechkin, Astron. Lett. 44, 735 (2018).

    Article  ADS  Google Scholar 

  50. J. Newman, Ann. Rev. Astron. Astrophys. 60, 363 (2022).

    Article  ADS  Google Scholar 

  51. I. Pâris, P. Petitjean, É. Aubourg, A. D. Myers, A. Streblyanska, B. W. Lyke, et al., Astron. Astrophys. 613, A51 (2018).

    Article  Google Scholar 

  52. M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babyshkin, et al., Astron. Astrophys. 650, A42 (2021).

    Article  Google Scholar 

  53. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., J. Mach. Learn. Res. 12, 2825 (2011).

    MathSciNet  Google Scholar 

  54. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al., Astron. Astrophys. 647, A1 (2021).

    Article  Google Scholar 

  55. N. P. Ross and N. J. G. Cross, Mon. Not. R. Astron. Soc. 494, 789 (2020).

    Article  ADS  Google Scholar 

  56. A. Ruiz, A. Corral, G. Mountrichas, and I. Georgantopoulos, Astron. Astrophys. 618, A52 (2018).

    Article  ADS  Google Scholar 

  57. I. Sadeh, F. B. Abdalla, and O. Lahav, Publ. Astron. Soc. Pacif. 128, 104502 (2016).

  58. M. Salvato, J. Buchner, T. Budavári, T. Dwelly, A. Merloni, M. Brusa, et al., Mon. Not. R. Astron. Soc. 473, 4937 (2018).

    Article  ADS  Google Scholar 

  59. M. Salvato, J. Wolf, T. Dwelly, A. Georgakakis, M. Brusa, A. Merloni, et al., Astron. Astrophys. 661, A3 (2022).

    Article  Google Scholar 

  60. S. J. Schmidt, A. I. Malz, J. Y. H. Soo, I. A. Almosallam, M. Brescia, S. Cavuoti, et al., Mon. Not. R. Astron. Soc. 499, 1587 (2020).

    ADS  Google Scholar 

  61. G. Somepalli, M. Goldblum, A. Schwarzschild, C. Bayan Bruss, and T. Goldstein, arXiv: 2106.01342 (2021).

  62. C. Stoughton, R. H. Lupton, M. Bernardi, M. R. Blanton, S. Burles, F. J. Castander, et al., Astron. J. 123, 485 (2002).

    Article  ADS  Google Scholar 

  63. R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al., Astron. Astrophys. 656, A132 (2021).

    Article  Google Scholar 

  64. C. Tang, D. Garreau, and U. von Luxburg, in Advances in Neural Information Processing Systems, Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Curran Assoc., 2018), Vol. 31.

    Google Scholar 

  65. K. Tearo and A. Meshcheryakov, in preprint (2023).

  66. N. A. Webb, M. Coriat, I. Traulsen, J. Ballet, C. Motch, F. J. Carrera, et al., Astron. Astrophys. 641, A136 (2020).

    Article  Google Scholar 

  67. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, T. Jarrett, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  68. D. G. York, J. Adelman, J. Anderson, S. F. Anderson, J. Annis, N. A. Bahcall, et al., Astron. J. 120, 1579 (2000).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is based on observations with the eROSITA telescope onboard the SRG observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by the Space Research Institute (IKI) within the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The SRG/eROSITA X-ray telescope was built by a consortium of German institutes led by the Max-Planck-Institut für extraterrestrische Physik (MPE), and supported by DLR. The SRG spacecraft was designed, built, launched and is operated by the Lavochkin Association and its subcontractors. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussurijsk, and Baykonur, funded by Roskosmos. The eROSITA data used in this paper were processed with the eSASS software developed by the German eROSITA consortium and the software developed by the Russian SRG/eROSITA consortium. The SRGz system was created at the High-Energy Astrophysics Department of the Space Research Institute of the Russian Academy of Sciences by the working group on the search for and identification of X-ray sources and the production of a catalog based on SRG/eROSITA data).

Funding

This work was supported by RSF grant no. 21-12-00343. The work of I.F. Bikmaev and I.M. Khamitov was supported in part by subsidy FZSM-2023-0015 of the Ministry of Education and Science of the Russian Federation allocated to the Kazan Federal University for the State assignment in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Meshcheryakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshcheryakov, A.V., Borisov, V.D., Khorunzhev, G.A. et al. SRGz: Machine Learning Methods and Properties of the Catalog of SRG/eROSITA Point X-ray Source Optical Counterparts in the DESI Legacy Imaging Surveys Footprint. Astron. Lett. 49, 359–409 (2023). https://doi.org/10.1134/S1063773723070022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723070022

Keywords:

Navigation