Skip to main content
Log in

Evolutionary Status of the Ap Stars HD 110066 and HD 153882

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the results of our determination of the fundamental atmospheric parameters for the magnetic chemically peculiar Ap stars HD 110066 (AX CVn) and HD 153882 (V451 Her). The determination of the atmospheric parameters (\(T_{\textrm{eff}}\), \(\textrm{log}{g}\), \(R/R_{\odot}\), and \(L/L_{\odot}\)) is based on a self-consistent analysis of high-resolution spectra (ESPaDOnS with \(R=65\,000\)) and the observed flux distribution in a wide spectral range. We have derived the radial magnetic field components \(B_{r}=4015\pm 180\) G for HD 110066 and \(B_{r}=3800\pm 200\) G for HD 153882 from the observed line splitting and magnetic differential broadening. We have analyzed the chemical composition and the vertical distribution (stratification) of Fe and Cr in atmospheric depth, because the lines of these elements make the greatest contribution to the absorption and stratification affects the distribution of the outgoing flux. We have constructed model atmospheres and determined the evolutionary status of these stars by taking into account the anomalous chemical composition and stratification. The positions of HD 110066 and HD 153882 on the Hertzsprung–Russell diagram confirm the observed decrease in the magnetic field strength with stellar age for stars with masses greater than 2.5 \(M_{\odot}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://archive.stsci.edu/iue/

REFERENCES

  1. S. J. Adelman and K. E. Rayle, Astron. Astrophys. 355, 308 (2000).

    ADS  Google Scholar 

  2. S. J. Adelman, D. M. Pyper, S. N. Shore, R. E. White, and W. H. Warren, Astron. Astrophys. Suppl. Ser. 81, 221 (1989).

    ADS  Google Scholar 

  3. S. J. Adelman, D. M. Pyper, Z. Lopez-Garcia, and H. Caliskan, Astron. Astrophys. 296, 467 (1995).

    ADS  Google Scholar 

  4. G. Alecian and M. J. Stift, Astron. Astrophys. 516, A53 (2010).

    Article  ADS  Google Scholar 

  5. E. B. Amôres and J. R. D. Lépine, Astron. Astrophys. 130, 659 (2005).

    ADS  Google Scholar 

  6. J. Babel, Astron. Astrophys. 258, 449 (1992).

    ADS  Google Scholar 

  7. M. Cohen, W. A. Wheaton, and S. T. Megeath, Astron. J. 126, 1090 (2003).

    Article  ADS  Google Scholar 

  8. R. M. Cutri et al., The IRSA 2MASS All-Sky Point Source Catalog (IRSA, 2003).

    Google Scholar 

  9. GAIA Collab. et al., Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  10. L. Girardi, A. Bressan, G. Bertelli, and C. Chiosi, Astron. Astrophys. 141, 371 (2000).

    ADS  Google Scholar 

  11. N. Grevesse, P. Scott, M. Asplund, and A. J. Sauval, Astron. Astrophys. 573, A27 (2015).

    Article  ADS  Google Scholar 

  12. The HIPPARCOS and TYCHO Catalogues, Astrometric and Photometric Star Catalogues Derived from the ESA HIPPARCOS Space Astrometry Mission, ESA Special Publ., No. 1200 (ESA, 1997).

  13. S. Hubrig, P. North, and M. Schöller, Astronom. Nachr. 328, 245 (2007).

    Article  Google Scholar 

  14. O. Kochukhov, Astrophys. Source Code Library, ascl:1805.015 (2018).

  15. O. Kochukhov and S. Bagnulo, Astron. Astrophys. 450, 763 (2006).

    Article  ADS  Google Scholar 

  16. O. Kochukhov, V. Tsymbal, T. Ryabchikova, V. Makaganyk, and S. Bagnulo, Astron. Astrophys. 460, 831 (2006).

    Article  ADS  Google Scholar 

  17. O. Kochukhov, D. Shulyak, and T. Ryabchikova, Astron. Astrophys. 499, 851 (2009).

    Article  ADS  Google Scholar 

  18. O. Kochukhov, M. Shultz, and C. Neiner, Astron. Astrophys. 621, A47 (2019).

    Article  ADS  Google Scholar 

  19. O. P. Kochukhov, in Physics of Magnetic Stars, Ed. by I. I. Romanyuk, D. O. Kudryavtsev, O. M. Neizvestnaya, and V. M. Shapoval (Spec. Astrophys. Obs., Zelenchuk, 2007), p. 109.

  20. R. Kurucz, ASP Conf. Ser. 44, 87 (1993).

  21. J. D. Landstreet, S. Bagnulo,V. Andretta, L. Fossati, E. Mason, J. Silaj, and G. A. Wade, Astron. Astrophys. 470, 685 (2007).

    Article  ADS  Google Scholar 

  22. F. LeBlanc and D. Monin, JRACS 99, 139 (2005).

    Google Scholar 

  23. F. LeBlanc, D. Monin, A. Hui-Bon-Hoa, and P. H. Hauschildt, Astron. Astrophys. 495, 937 (2009).

    Article  ADS  Google Scholar 

  24. F. van Leeuwen, Astron. Astrophys. 474, 653 (2007).

    Article  ADS  Google Scholar 

  25. L. Mashonkina, T. Ryabchikova, and A. Ryabtsev, Astron. Astrophys. 441, 309 (2005).

    Article  ADS  Google Scholar 

  26. L. Mashonkina, T. Ryabchikova, A. Ryabtsev, and R. Kildiyarova, Astron. Astrophys. 495, 297 (2009).

    Article  ADS  Google Scholar 

  27. G. Mathys, Astron. Astrophys. Suppl. Ser. 89, 121 (1991).

    ADS  Google Scholar 

  28. G. Mathys, Astron. Astrophys. 602, A14 (2017).

    Article  Google Scholar 

  29. G. Michaud, Astrophys. J. 160, 641 (1970).

    Article  ADS  Google Scholar 

  30. N. Nesvacil, D. Shulyak, T. A. Ryabchikova, O. Kochukhov, A. Akberov, and W. Weiss, Astron. Astrophys. 552, A28 (2013).

    Article  ADS  Google Scholar 

  31. M. Netopil, E. Paunzen, H. M. Maitzen, P. North, and S. Hubrig, Astron. Astrophys. 491, 545 (2008).

    Article  ADS  Google Scholar 

  32. A. Romanovskaya, T. Ryabchikova, D. Shulyak, K. Perraut, G. Valyavin, T. Burlakova, and G. Galazutdinov, Mon. Not. R. Astron. Soc. 488, 2343 (2019).

    Article  ADS  Google Scholar 

  33. T. Ryabchikova, IAU Symp. 145, 149 (1991).

  34. T. Ryabchikova, N. Piskunov, O. Kochukhov, V. Tsymbal, P. Mittermayer, and W. W. Weiss, Astron. Astrophys. 384, 545 (2002).

    Article  ADS  Google Scholar 

  35. T. Ryabchikova, N. Nesvacil, W. W. Weiss, O. Kochukhov, and C. Stütz, Astron. Astrophys. 423, 705 (2004).

    Article  ADS  Google Scholar 

  36. T. Ryabchikova, F. Leone, and O. Kochukhov, Astron. Astrophys. 438, 973 (2005).

    Article  ADS  Google Scholar 

  37. T. Ryabchikova, N. Piskunov, R. L. Kurucz, H. C. Stempels, U. Heiter, Y. Pakhomov, and P. S. Barklem, Phys. Scr. 90, 54005 (2015).

    Article  ADS  Google Scholar 

  38. T. A. Ryabchikova and A. M. Romanovskaya, Astron. Lett. 43, 252 (2017).

    Article  ADS  Google Scholar 

  39. P. Scott, N. Grevesse, M. Asplund, A. J. Sauval, K. Lind, Y. Takeda, R. Collet, R. Trampedach, et al., Astron. Astrophys. 573, A25 (2015a).

    Article  ADS  Google Scholar 

  40. P. Scott, M. Asplund, N. Grevesse, M. Bergemann, and A. J. Sauval, Astron. Astrophys. 573, A26 (2015b).

    Article  ADS  Google Scholar 

  41. D. Shulyak, V. Tsymbal, T. Ryabchikova, C. Stütz, and W. W. Weiss, Astron. Astrophys. 428, 993 (2004).

    Article  ADS  Google Scholar 

  42. D. Shulyak, T. Ryabchikova, L. Mashonkina, and O. Kochukhov, Astron. Astrophys. 499, 879 (2009).

    Article  ADS  Google Scholar 

  43. D. Shulyak, T. Ryabchikova, R. Kildiyarova, and O. Kochukhov, Astron. Astrophys. 520, A88 (2010).

    Article  ADS  Google Scholar 

  44. D. Shulyak, T. Ryabchikova, and O. Kochukhov, Astron. Astrophys. 551, A14 (2013).

    Article  ADS  Google Scholar 

  45. T. M. Sitnova, L. I. Mashonkina, and T. A. Ryabchikova, Astron. Lett. 39, 126 (2013).

    Article  ADS  Google Scholar 

  46. G. I. Thompson, K. Nandy, C. Jamar, A. Monfils, L. Houziaux, D. J. Carnochan, and R. Wilson, Catalogue of Stellar Ultraviolet Fluxes. A Compilation of Absolute Stellar Fluxes Measured by the Sky Survey Telescope (S2/68) aboard the ESRO Satellite TD-1 (1978).

  47. G. A. Wade, T. A. Ryabchikova, S. Bagnulo, and N. Piskunov, ASP Conf. Ser. 248, 373 (2001).

Download references

ACKNOWLEDGMENTS

We thank T. Sitnova for the provided non-LTE calculations of neutral oxygen lines.

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 19-32-90147); the work was supported in part by the KP19-270 Program ‘‘Questions of the Origin and Evolution of the Universe with the Application of Methods of Ground-Based Observations and Space Research.’’ In this paper we used the VizieR and VALD databases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Romanovskaya.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanovskaya, A.M., Ryabchikova, T.A. & Shulyak, D.V. Evolutionary Status of the Ap Stars HD 110066 and HD 153882. Astron. Lett. 46, 331–343 (2020). https://doi.org/10.1134/S1063773720050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720050060

Keywords:

Navigation