Skip to main content
Log in

Accretion of helium and metal-rich gas onto neutron stars and black holes at high luminosities

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Ultraluminous X-ray sources fed by Wolf-Rayet star winds and X-ray bursters in ultracompact binaries with He or C white dwarfs have accretion disks whose properties may differ significantly from those of pure Hα-accretion disks. Therefore, we have included the dependence on charge number Z and mean molecular weights μe/I in the Shakura and Sunyaev (1973) scaling relations for the key parameters of the disk. Furthermore, we also consider the pseudo-Newtonian potential of Paczyńsky and Wiita (1980). These scaling relations might become useful, e.g., when estimating the illumination efficiency of the outer parts of the disk. We also address the changes in the structure of the boundary (spreading) layer on the surfaces of neutron stars that occurs in the case of H-depleted accretion disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Abbott, P. A. Crowther, L. Drissen, et al., Mon. Not. R. Astron. Soc. 350, 552 (2004).

    Article  ADS  Google Scholar 

  2. M. A. Abramowicz, B. Czerny, J. P. Lasota, et al., Astrophys. J. 332, 646 (1988).

    Article  ADS  Google Scholar 

  3. M. C. Begelmann, Astrophys. J. 568, L97 (2002).

    ADS  Google Scholar 

  4. P. A. Crowther, L. Dessart, D. J. Hillier, et al., Astron. Astrophys. 392, 653 (2002).

    Article  ADS  Google Scholar 

  5. M. Gilfanov, Prog. Theor. Phys., Suppl. 155, 49 (2004).

    Google Scholar 

  6. H.-J. Grimm, M. Gilfanov, and R.A. Sunyaev, Astron. Astrophys. 392, 923 (2002).

    ADS  Google Scholar 

  7. H.-J. Grimm, M. Gilfanov, and R. A. Sunyaev, Mon. Not. R. Astron. Soc. 339, 793 (2003).

    Article  ADS  Google Scholar 

  8. W. R. Hamann and L. Koesterke, Astron. Astrophys. 360, 647 (2000).

    ADS  Google Scholar 

  9. N. J. Hammer, D.-J. Kusterer, T. Nagel, et al., Astron. Soc. Pac. Conf. Ser. 330, 333 (2005).

    ADS  Google Scholar 

  10. N. A. Inogamov and R. A. Syunyaev, Pis’ma Astron. Zh. 25, 323 (1999) [Astron. Lett. 25, 269 (1999)].

    Google Scholar 

  11. A. M. Juett and D. Chakrabarty, Astrophys. J. 599, 498 (2003).

    Article  ADS  Google Scholar 

  12. A. R. King, Mon. Not. R. Astron. Soc. 335, L13 (2002).

    Article  ADS  Google Scholar 

  13. A. Kubota, C. Done, and K. Makishima, Mon. Not. R. Astron. Soc. 337, L11 (2002).

    Article  ADS  Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 2003; Pergamon, Oxford, 1980).

    Google Scholar 

  15. Q. Z. Liu and I. F. Mirabel, Astron. Astrophys. 429, 1125 (2005).

    Article  ADS  Google Scholar 

  16. D. Lommen, L. Yungelson, E. van den Heuvel, et al., Astron. Astrophys. (2005) (in press); astroph/0507304.

  17. V. M. Lyutyi and R. A. Sunyaev, Astron. Zh. 53, 511 (1976) [Sov. Astron. 20, 290 (1976).

    ADS  Google Scholar 

  18. K. Menou, R. Perna, and L. Hernquist, Astrophys. J. 564, L81 (2002).

    Article  ADS  Google Scholar 

  19. M. C. Miller and E. J. M. Colbert, Int. J. Mod. Phys. D 13, 1 (2004).

    ADS  Google Scholar 

  20. T. Nagel, S. Dreizler, T. Rauch, et al., Astron. Astrophys. 428, 109 (2004).

    Article  ADS  Google Scholar 

  21. G. Nelemans, P. G. Jonker, T. R. Marsh, et al., Mon. Not. R. Astron. Soc. 348, L7 (2004).

    Article  ADS  Google Scholar 

  22. B. Paczyńsky and P. J. Wiita, Astron. Astrophys. 88, 23 (1980).

    ADS  Google Scholar 

  23. R. Popham and R. A. Sunyaev, Astrophys. J. 547, 355 (2001).

    Article  ADS  Google Scholar 

  24. L. A. Pozdnyakov, I. M. Sobol, and R. A. Sunyaev, Sov. Sci. Rev. Sec. E: Astrophys. Space Phys. Rev. 2, 189 (1983).

    ADS  Google Scholar 

  25. T. P. Roberts, R. S. Warwick, M. J. Ward, et al., Mon. Not. R. Astron. Soc. 349, 1193 (2004a).

    Article  ADS  Google Scholar 

  26. T. P. Roberts, R. S. Warwick, M. J. Ward, et al., Mon. Not. R. Astron. Soc. 350 (1536 (2004b).

    Article  ADS  Google Scholar 

  27. N. S. Schulz, D. Chakrabarty, H. L. Marshall, et al., Astrophys. J. 563, 941 (2001).

    Article  ADS  Google Scholar 

  28. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  29. S. L. Shapiro, A. P. Lightman, and D. M. Eardley, Astrophys. J. 204, 187 (1976).

    ADS  Google Scholar 

  30. N. R. Sigbatullin and R. A. Syunyaev, Pis’ma Astron. Zh. 26, 899 (2000) [Astron. Lett. 26, 772 (2000)].

    Google Scholar 

  31. L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1962; Mir, Moscow, 1965).

    Google Scholar 

  32. R. A. Sunyaev and N. I. Shakura, Pis’ma Astron. Zh. 12, 286 (1986) [Sov. Astron. Lett. 12, 117 (1986)].

    ADS  Google Scholar 

  33. K. A. van der Hucht, New Astron. Rev. 45, 135 (2001).

    ADS  Google Scholar 

  34. M. H. van Kerkwijk, P. A. Charles, T. R. Geballe, et al., Nature 355, 703 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 4, pp. 288–294.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunkel, J., Chluba, J. & Sunyaev, R.A. Accretion of helium and metal-rich gas onto neutron stars and black holes at high luminosities. Astron. Lett. 32, 257–262 (2006). https://doi.org/10.1134/S1063773706040062

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773706040062

PACS numbers

Key words

Navigation