Skip to main content
Log in

Application of Radioactive Isotopes for Beta-Voltaic Generators

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The features of using radioactive isotopes when creating off-line power supplies are considered. The analysis of the substances used in radioisotope thermoelectric generators (RTGs) is carried out. The prospects for manufacturing beta-voltaic generators are justified and they are compared with other electric power sources. The mechanism of β-decay and its place among other types of nuclear transformations is considered. The basic requirements for radiation safety and the used materials of the frame and converter are formulated. Some designs of radioisotope beta-voltaic sources proposed earlier are considered. A list of isotopes that can be used as a power source in a beta-voltaic generator is presented. The methods for obtaining the radioactive materials demonstrating β-decay and their basic properties and natural isotopes are considered. It is concluded that the choice of nickel-63 isotope is preferable for use in beta-voltaic generators due to the optimal combination of its half lifetime, average particle energy, and radiation intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Koutitas, G. and Demestichas, P., A review of energy efficiency in telecommunication networks, Telfor J., 2010, vol. 2, no. 1, pp. 2–7. http://journal.telfor.rs/Published/Vol2No1/Vol2No1_A1.pdf.

    Google Scholar 

  2. Bose, B.K., Global energy scenario and impact of power electronics in 21st century, IEEE Trans. Industrial Electron., 2013, vol. 60, no. 7, pp. 2638–2651. doi 10.1109/TIE.2012.2203771

    Article  Google Scholar 

  3. Paradiso, J.A. and Starner, T., Energy scavenging for mobile and wireless electronics, IEEE Pervasive Comput., 2005, vol. 4, no. 1, pp. 18–27. doi 10.1109/MPRV.2005.9

    Article  Google Scholar 

  4. Moseley, H.G.J. and Fellow, J.H., The attainment of high potentials by the use of radium, Proc. R. Soc. London A, 1913, vol. 88, no. 605, pp. 471–476. doi 10.1098/rspa.1913.0045

    Article  Google Scholar 

  5. Singh, N., Radioisotopes, Applications in Physical Sciences, Rijeka, Croatia: InTech, 2011. doi 10.5772/858

    Book  Google Scholar 

  6. Huffman, F.N. and Norman, C., Nuclear-fueled cardiac pacemakers, Chest, 1974, vol. 65, no. 6, pp. 667—672. doi 10.1378/chest.65.6.667

    Article  Google Scholar 

  7. Wei, X. and Liu, J., Power sources and electrical recharging strategies for implantable medical devices, Front. Energy Power Eng. China, 2008, vol. 2, no. 1, pp. 1–13. doi 10.1007/s11708-008-0016-3

    Article  Google Scholar 

  8. Whalen, S.A., Apblett, C.A., and Aselage, T.L., Improving power density and efficiency of miniature radioisotopic thermoelectric generators, J. Power Sources, 2008, vol. 180, no. 1, pp. 657–663. doi 10.1016/j.jpowsour.2008.01.080

    Article  Google Scholar 

  9. Olsen, L.C., Cabauy, P., and Elkind, B.J., Betavoltaic power sources, Phys. Today, 2012, vol. 65, no. 12, pp. 35–38. doi 10.1063/PT.3.1820

    Article  Google Scholar 

  10. Seaborg, G.T., Table of isotopes, Rev. Mod. Phys, 1944, vol. 16, no. 1, pp. 1–32. doi 10.1103/RevMod-Phys.30.585

    Article  Google Scholar 

  11. Baranov, V.Yu., Izotopy: svoistva, poluchenie, primenenie (Isotopes: Properties, Production, Application), Moscow: Fizmatlit, 2005.

    Google Scholar 

  12. Wu, Ts.S. and Moshkovskii, S.A., Beta-raspad (Beta Decay), Moscow: Atomizdat, 1970.

    Google Scholar 

  13. Lewis, V.E., Beta decay of tritium, Nucl. Phys. A, 1970, vol. 151, no. 1, pp. 120–128. doi 10.1016/0375-9474(70)90972-3

    Article  Google Scholar 

  14. Daris, R. and St-Pierre, C., Beta decay of tritium, Nucl. Phys. A, 1969, vol. 138, no. 3, pp. 545–555. doi 10.1016/0375-9474(69)90237-1

    Article  Google Scholar 

  15. Windle, W.F., Microwatt radioisotope energy converters, IEEE Trans. Aerospace, 1964, vol. 2, no. 2, pp. 646–651. doi 10.1109/TA.1964.4319649

    Article  Google Scholar 

  16. Rappaport, P. and Linder, E.G., Radioactive charging effects with a dielectric medium, J. Appl. Phys., 1953, vol. 24, no. 9, pp. 1110—1114. doi 10.1063/1.1721457

    Article  Google Scholar 

  17. Müller, S., Shiping, Ch., Daniel, H., Dragoun, O., Dragounovä, N., Hagn, H., Hechtl, E., Hiddemann, K.-H., and Spalek, A., Search for an admixture of a 17 keV neutrino in the ß decay of 35S, Zeitschr. Naturf. A, 1994, vol. 49, no. 9, pp. 874–884. doi 10.1515/zna-1994-0910

    Google Scholar 

  18. Thoennessen, M., Discovery of the isotopes with 11 ≤ Z≤ 19, At. Data Nucl. Data Tables, 2012, vol. 98, no. 5, pp. 933–959. doi 10.1016/j.adt.2011.09.002

    Article  Google Scholar 

  19. Meier, D.E., Garnov, A.Y., Robertson, J.D., Kwon, J.W., and Wacharasindhu, T., Production of 35S for a liquid semiconductor betavoltaic, J. Radioanal. Nucl. Chem., 2009, vol. 282, no. 1, pp. 271–274. doi 10.1007/s10967-009-0157-9

    Article  Google Scholar 

  20. R. Bogue, Powering tomorrow's sensor: a review of technologies, Part 1, Sensor Rev., 2010, vol. 30, no. 3, pp. 182–186. doi 10.1108/02602281011051344

    Article  Google Scholar 

  21. Heim, M., Fritsch, A., Schuh, A., Shore, A., et al., Discovery of the krypton isotopes, At. Data Nucl. Data Tables, 2010, vol. 96, no. 4, pp. 333–340. doi 10.1016/j.adt.2010.01.001

    Article  Google Scholar 

  22. Collon, P., Kutschera, W., and Lu, Z.-T., Tracing noble gas radionuclides in the environment, Ann. Rev. Nucl. Part. Sci., 2004, vol. 54, pp. 39–67. doi 10.1146/annurev.nucl.53.041002.110622

    Article  Google Scholar 

  23. Eiting, C.J., Krishnamoorthy, V., Romero, E., and Jones, S., Betavoltaic power cells, in Proceeding of the 42nd Power Sources Conference, 2006, Paper 25.5, pp. 601–605.

    Google Scholar 

  24. Thoennessen, M., Discovery of isotopes with Z≤10, At. Data Nucl. Data Tables, 2012, vol. 98, no. 1, pp. 43–62. doi 10.1016/j.adt.2011.08.002

    Article  Google Scholar 

  25. Lewis, G.N. and Spedding, F.H., A spectroscopic search for H3 in concentrated H2, Phys. Rev., 1933, vol. 43, no. 12, pp. 964–966. doi 10.1103/PhysRev.43.964

    Article  Google Scholar 

  26. Eidinoff, M.L., Upper limit to the tritium content of ordinary water, J. Chem. Phys., 1947, vol. 15, no. 6, p. 416. doi 10.1063/1.1746547

    Article  Google Scholar 

  27. Suhaimi, A., Wölfle, R., Qaim, S.M., Warwick, P., and Stöcklin, G., Measurement of 14N(n,t)12C reaction cross section in the energy range of 5.0 to 10.6MeV, Radiochim. Acta, 1988, vol. 43, no. 3, pp. 133–138. doi 10.1524/ract.1988.43.3.133

    Article  Google Scholar 

  28. Oliver, B.M., Farrar, H. IV, and Bretscher, M.M., Tritium half-life measured by helium-3 growth, Appl. Radiat. Isotopes, 1987, vol. 38, no. 11, pp. 959–965. doi 10.1016/0883-2889(87)90268-1

    Article  Google Scholar 

  29. Myers, E.G., Wagner, A., Kracke, H., and Wesson, B.A., Atomic masses of tritium and helium-3, Phys. Rev. Lett., 2015, vol. 114, no. 1, pp. 013003–1-5. doi 10.1103/PhysRevLett.114.013003

    Article  Google Scholar 

  30. Oliphant, M.L.E., Harteck, P., and Rutherford, O.M., Transmutation effects observed with heavy hydrogen, Proc. R. Soc. London A, 1934, vol. 144, no. 853, pp. 692–703. doi 10.1098/rspa.1934.0077

    Article  Google Scholar 

  31. Morgan, L., and Pasley, J., Tritium breeding control within liquid metal blankets, Fusion Eng. Des., 2013, vol. 88, no. 3, pp. 107–112. doi 10.1016/j.fusengdes. 2012.11.011

    Article  Google Scholar 

  32. Matsuura, H., Nakaya, H., Nakao, Y., Shimakawa, S., Goto, M., Nakagawa, Sh., and Nishikawa, M., Evaluation of tritium production rate in a gas-cooled reactor with continuous tritium recovery system for fusion reactors, Fusion Eng. Des., 2013, vol. 88, nos. 8-9, pp. 2219–2222. doi 10.1016/j.fusengdes.2013.05.022

    Article  Google Scholar 

  33. Engelkemeir, A.G., Hamill, W.H., Inghram, M.G., and Libby, W.F., The half-life of radiocarbon (C14), Phys. Rev., 1949, vol. 75, no. 12, pp. 1825–1833. doi 10.1103/PhysRev.75.1825

    Article  Google Scholar 

  34. Langer, L.M., Motz, J.W., and Price, H.C., Jr., Low energy Beta-Ray spectra: Pm147S35, Phys. Rev., 1950, vol. 77, no. 7, pp. 798–806. doi 10.1103/PhysRev.77.798

    Article  Google Scholar 

  35. Korff, S.A., On the contribution to the ionization at sea-level produced by the neutrons in the cosmic radiation, Terrest. Magn. Atmos. Electr., 1940, vol. 45, no. 2, pp. 133–134. doi 10.1029/TE045i002p00133

    Article  Google Scholar 

  36. Hannä, G.C., Primeau, D.B., and Tunnicliffe, P.R., Thermal neutron cross sections and resonance integrals of the reactions O17(n,a)C14, Ar36n,a)S33, and N14(n,p)C14, Canad. J. Phys., 1961, vol. 39, no. 12, pp. 1784–1806. doi 10.1139/p61-201

    Article  Google Scholar 

  37. Konstantinov, E.A., Korablev N.A., Solov'ev E.N., Shamov V.P., Fedorov V.L., and Litvinov A.M., 14C emission from RBMK-1500 reactors and features determining it, Sov. At. Energy, 1989, vol. 66, no. 1, pp. 77–79. doi 10.1007/BF01121081

    Article  Google Scholar 

  38. Choppin, G., Liljenzin, J.-O., Rydberg, J., and Ekberg, C., Radio chemistry and Nuclear Chemistry, 4th ed., Amsterdam, Boston: Elsevier, 2013. doi 10.1016/B978-0-12-405897-2.01001-6

    Google Scholar 

  39. Mannik, L., and Brown, S.K., Laser enrichment of carbon-14, Appl. Phys. B, 1985, vol. 86, no. 2, pp. 79–86. doi 10.1007/BF00692553

    Article  Google Scholar 

  40. Voges, R., Heys, J.R., and Moenius, T., Preparation of Compounds Labeled with Tritium and Carbon-14, New York: Wiley, 2009.

    Book  Google Scholar 

  41. Garofali, K., Robinson, R., and Thoennessen, M., Discovery of chromium, manganese, nickel, and copper isotopes, At. Data Nucl. Data Tables, 2012, vol. 98, no. 2, pp. 356–372. doi 10.1016/j.adt.2011.11.002

    Article  Google Scholar 

  42. Gresits, I., and Tolgyesi, S., Determination of soft X-ray emitting isotopes in radioactive liquid wastes of nuclear power plants, J. Radioanal. Nucl. Chem., 2003, vol. 258, no. 1, pp. 107–112. doi 10.1023/A:1026214310645

    Article  Google Scholar 

  43. Holm, E., Rots, P., and Skwarzec, B., Radioanalytical studies of fallout Ni, Int. J. Radiat. Appl. Instrum., Part A, 1992, vol. 43, nos. 1-2, pp. 371–376. doi 10.1016/0883-2889(92)90107-P

    Article  Google Scholar 

  44. Colle, R., Zimmerman, B.E., Cassette, P., and Laureano-Perez, L., 63Ni, its half-life and standardization: revisited, Appl. Radiat. Isotopes, 2008, vol. 66, no. 1, pp. 60–68. doi 10.1016/j.apradiso.2007.07.017

    Article  Google Scholar 

  45. Gaitskell, R.J., Angrave, L.C., Booth, N.E., Hahn, A.D., and Swift, A.M., A measurement of the beta spectrum of 63Ni using a new type of calorimetric cryogenic detector, Phys. Lett. B, 1996, vol. 370, nos. 1-2, pp. 163–166. doi 10.1016/0370-2693(96)00084-6

    Article  Google Scholar 

  46. Angrave, L.C., Booth, N.E., Gaitskell, R.J., and Salmon, G.L., Measurement of the atomic exchange effect in nuclear P decay, Phys. Rev. Lett., 1998, vol. 80, no. 8, pp. 1610–1613. doi 10.110 3/PhysRevLett. 80.1610

    Article  Google Scholar 

  47. Coursey, B.M., Lucas, L.L., Grau Malonda, A., and Garcia-Torano, E., The standardization of plutonium-241 and nickel-63, Nucl. Instrum. Methods Phys. Res. A, 1989, vol. 279, no. 3, pp. 603–610. doi 10.1016/0168-9002(89)91310-7

    Google Scholar 

  48. Le-Bret, C., Loidl, M., Rodrigues, M., Mougeot, X., and Bouchard, J., Study of the influence of the source quality on the determination of the shape factor of beta spectra, J. Low Temp. Phys., 2012, vol. 167, no. 5, pp. 985–990. doi 10.1007/s10909-012-0607-6

    Article  Google Scholar 

  49. Sims, G.H.E. and Juhnke, D.G., The beta self-absorption of Ni63 as metallic nickel, Int. J. Appl. Radiat. Isotopes, 1967, vol. 18, no. 10, pp. 727–728. doi 10.1016/0020-708X(67)90034-8

    Article  Google Scholar 

  50. Gelsema, W.J., Donk, L., Enckevort, J.H.T.F.P., and Blijleven, H.A., The self-absorption of the beta-radiation of 63Ni in metallic nickel sources, J. Chem. Educat., 1969, vol. 46, no. 8, pp. 528–530. doi 10.1021/ed046p528

    Article  Google Scholar 

  51. Barnes, I.L. Garfinkel, S.B., and Mann, W.B., Nickel-63: standardization, half-life and neutron-capture cross-section, Int. J. Appl. Radiat. Isotopes, 1971, vol. 22, no. 12, pp. 777–781. doi 10.1016/0020-708X(71)90143-8

    Article  Google Scholar 

  52. Sosnin, L.J., Suvorov, I.A., Tcheltsov, A.N., and Rogozev, B.I., Production of 63Ni of high specific activity, Nucl. Instrum. Methods Phys. Res. A, 1993, vol. 334, no. 1, pp. 43–44. doi 10.1016/0168-9002(93)90526-N

    Article  Google Scholar 

  53. Numajiri, M., Oki, Y., Suzuki, T., Miura, T., Taira, M., Kanda, Yu., and Kondo, K., Estimation of nickel-63 in steel and copper activated at high-energy accelerator facilities, Appl. Radiat. Isotopes, 1994, vol. 45, no. 4, pp. 509–514. doi 10.1016/0969-8043(94)90116-3

    Article  Google Scholar 

  54. Pustovalov, A.A., Gusev, V.V., Zadde, VV., Petrenko, N.S., Tsvetkov, L.A., and Tikhomirov, A.V., 63Ni-based P-electric current source, At. Energy, 2007, vol. 103, no. 6, pp. 353–356. doi 10.1007/s10512-007-0151-7

    Article  Google Scholar 

  55. Parker, A.M. and Thoennessen, M., Discovery of rubidium, strontium, molybdenum, and rhodium isotopes, At. Data Nucl. Data Tables, 2012, vol. 98, no. 4, pp. 812–831. doi 10.1016/j.adt.2012.06.001

    Article  Google Scholar 

  56. Nystrom, A. and Thoennessen, M., Discovery of yttrium, zirconium, niobium, technetium, and ruthenium isotopes, At. Data Nucl. Data Tables, 2012, vol. 98, no. 2, pp. 95–119. doi 10.1016/j.adt.2011.12.002

    Article  Google Scholar 

  57. Horwitz, E.P., Dietz, M.L., and Fisher, D.E., SREX: A new process for the extraction and recovery of strontium from acidic nuclear waste streams, Solvent Extract. Ion Exchange, 1991, vol. 9, no. 1, pp. 1–25. doi 10.1080/07366299108918039

    Article  Google Scholar 

  58. Loferski, J.J. and Rappaport, P., Radiation damage in Ge and Si detected by carrier lifetime changes: damage thresholds, Phys. Rev., 1958, vol. 111, no. 2, pp. 432–439.

    Article  Google Scholar 

  59. Flicker, H., Loferski, J.J., and Elleman, T.S., Construction of a promethium-147 atomic battery, IEEE Trans. Electron Dev., 1964, vol. 11, no. 1, pp. 2–8. doi 10.1109/T-ED.1964.15271

    Article  Google Scholar 

  60. Manjunatha, H.C. and Rudraswamy, B., External bremsstrahlung of 90Sr-90Y, 147Pm and 204Tl in detector compounds, Radiat. Phys. Chem., 2013, vol. 85, pp. 95–101. doi 10.1016/j.radphyschem.2012.12.022

    Article  Google Scholar 

  61. May, E. and Thoennessen, M., Discovery of cesium, lanthanum, praseodymium and promethium isotopes, At. Data Nucl. Data Tables, 2012, vol. 98, no. 5, pp. 960–982. doi 10.1016/j.adt.2011.09.005

    Article  Google Scholar 

  62. Reader, J. and Davis, S.P., Promethium 147 hyperfine structure under high resolution, J. Opt. Soc. Am., 1963, vol. 53, no. 4, pp. 431–435. doi 10.1364/JOSA.53.000431

    Article  Google Scholar 

  63. Gorshkov, V.K., Ivanov, R.N., Kukabadze, G.M., and Reformatsky, I.A., 235U Fission product yields in the rare earth region, J. Nucl. Energy, 1958, vol. 8, nos. 1-3, pp. 69–73. doi 10.1016/0891-3919(58)90010-X

    Google Scholar 

  64. Lee, C.-S., Wang, Y.-M., Cheng, W.-L., and Ting, G., Chemical study on the separation and purification of promethium-147, J. Radioanal. Nucl. Chem., 1989, vol. 130, no. 1, pp. 21–37. doi 10.1007/BF02037697

    Article  Google Scholar 

  65. Yoshida, M., Sumiya, S., Watanabe, H., and Tobita, K., A rapid separation method for determination of promethium-147 and samarium-151 in environmental samples with high performance liquid chromatography, J. Radioanal. Nucl. Chem., 1995, vol. 197, no. 2, pp. 219–227. doi 10.1007/BF02036001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bykov.

Additional information

Original Russian Text © A.S. Bykov, M.D. Malinkovich, I.V. Kubasov, A.M. Kislyuk, D.A. Kiselev, S.V. Ksenich, R.N. Zhukov, A.A. Temirov, M.V. Chichkov, A.A. Polisan, Yu.N. Parkhomenko, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Materialy Elektronnoi Tekhniki, 2016, Vol. 19, No. 4, pp. 221–234.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, A.S., Malinkovich, M.D., Kubasov, I.V. et al. Application of Radioactive Isotopes for Beta-Voltaic Generators. Russ Microelectron 46, 527–539 (2017). https://doi.org/10.1134/S1063739717080054

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739717080054

Keywords

Navigation