Skip to main content
Log in

Phase Transitions in Saline Pore Water in Artificial Ground Freezing

  • MINING THERMOPHYSICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The influence of phase transitions in moist and salt-containing soil on freezing process is analyzed. The effects connected with the crystallization heat of pore water under negative temperatures and with the crystallization heat of salt when the eutectic point is reached are discussed. The conclusions on reachability of the eutectic point in artificially frozen strata above saline are drawn. Using a mathematical mode of heat processes in artificially frozen clay containing the common salt solution, the influence of the offset of the eutectic point on the temperature field in the frozen ground is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. Levin, L.Y., Semin, M.A., and Parshakov, O.S., Improving Methods of Frozen Wall State Prediction for Mine Shafts under Construction Using Distributed Temperature Measurements in Test Wells, J. Min. Institute, 2019, vol. 237, pp. 268–274.

    Article  Google Scholar 

  2. Baryakh, A.A., Smirnov, E.V., Kvitkin, S.Yu., and Tenison, L.O., Potash Industry in Russia: Challenges of Safe and Efficient Subsoil Use, Gorn. Prom., 2022, no. 1, pp. 41–50.

  3. Ol’khovikov, Yu.P., Krep’ kapital’nykh vyrabotok kaliinykh i solyanykh rudnikov (Mine Support in Permanent Roadways in Potash and Salt Mines), Moscow: Nedra, 1984.

    Google Scholar 

  4. Yong, R.N., Cheung, C.H., and Sheeran, D.E., Prediction of Salt Influence on Unfrozen Water Content in Frozen Soils, Developments Geotech. Eng., 1979, vol. 26, pp. 137–155.

  5. Bing, H. and Ma, W., Laboratory Investigation of the Freezing Point of Saline Soil, Cold Regions Sci. Technol., 2011, vol. 67, no. 1–2, pp. 79–88.

    Article  Google Scholar 

  6. Banin, A. and Anderson, D.M., Effects of Salt Concentration Changes During Freezing on the Unfrozen Water Content of Porous Materials, Water Resources Res., 1974, vol. 10, no. 1, pp. 124–128.

    Article  Google Scholar 

  7. Qin, B., Rui, D., Ji, M., Chen, X., and Wang, S., Research on Influences of Groundwater Salinity and Flow Velocity on Artificial Frozen Wall, Transportation Geotech., 2022, vol. 34, 100739.

    Article  Google Scholar 

  8. Semin, M.A., Levin, L.Yu., Zhelnin, M.S., and Plekhov, O.A., Modeling of Artificial Ground Freezing under Conditions of Nonuniform Mineralization of Pore Water in Rocks, Teplofiz. Vys. Temp., 2022, vol. 60, no. 3, pp. 434–442.

    Google Scholar 

  9. Rouabhi, A., Jahangir, E., and Tounsi, H., Modeling Heat and Mass Transfer During Ground Freezing Taking into Account the Salinity of the Saturating Fluid, Int. J. Heat Mass Transfer, 2018, vol. 120, pp. 523–533.

    Article  Google Scholar 

  10. Tounsi, H., Rouabhi, A., and Jahangir, E., Thermo-Hydro-Mechanical Modeling of Artificial Ground Freezing Taking into Account the Salinity of the Saturating Fluid, Comp. Geotech., 2020, vol. 119, 103382.

    Article  Google Scholar 

  11. Liu, Q. and Hu, R., Simulation of Heat and Mass Transfer During Artificial Ground Freezing in Saturated Saline Groundwater, Excerpt from the Proc. of the 2017 COMSOL Conf., Rotterdam, 2017.

  12. Semin, M., Levin, L., Bublik, S., Brovka, G., Brovka, A., and Agutin, K., Parameterization of the Model of Artificial Clay Freezing Considering the Effect of Pore Water Salinity, Fluids, 2022, vol. 7, no. 6, 186.

    Article  Google Scholar 

  13. Nikolaev, P.V., Process Parameters of Brineless Ground Freezing with a Single Freeze Pipe, Gornyi Zhurnal, 2022, no. 8, pp. 44–50.

  14. Lucas, T., Chourot, J.M., Bohuon, Ph., and Flick, D., Freezing of a Porous Medium in Contact with a Concentrated Aqueous Freezant: Numerical Modeling of Coupled Heat and Mass Transport, Int. J. Heat Mass Transfer, 2001, vol. 44, no. 11, pp. 2093–2106.

    Article  Google Scholar 

  15. Han, B., Choi, J. H., Dantzig, J.A., and Bischof, J.C., A Quantitative Analysis on Latent Heat of an Aqueous Binary Mixture, Cryobiology, 2006, vol. 52, no. 1, pp. 146–151.

    Article  Google Scholar 

  16. Archer, D.G. and Carter, R.W., Thermodynamic Properties of the NaCl+ H2O System. 4. Heat Capacities of H2O and NaCl (aq) in Cold-Stable and Supercooled States, J. Physical Chemistry B, 2000, vol. 104, no. 35, pp. 8563–8584.

    Article  Google Scholar 

  17. Koniorczyk, M. and Bednarska, D., Kinetics of Water Freezing from Inorganic Salt Solution Confined in Mesopores, Thermochimica Acta, 2019, vol. 682, 178434.

    Article  Google Scholar 

  18. Wan, X., Tan, D., Lai, Y., Li, S., Lu, J., and Yan, Z., Experimental Study on Pore Water Phase Transition in Saline Soils, Cold Regions Sci. Technol., 2022, vol. 203, 103661.

    Article  Google Scholar 

  19. Dove, P.M., The Dissolution Kinetics of Quartz in Aqueous Mixed Cation Solutions, Geoch. Cosmochimica Acta, 1999, vol. 63, no. 22, pp. 3715–3727.

    Article  Google Scholar 

  20. Nishimura, S., Gens, A., Olivella, S., and Jardine, R.J., THM-Coupled Finite Element Analysis of Frozen Soil: Formulation and Application, Geotechnique, 2009, vol. 59, no. 3, pp. 159–171.

    Article  Google Scholar 

  21. Alzoubi, M.A., Xu, M., Hassani, F.P., Poncet, S., and Sasmito, A.P., Artificial Ground Freezing: A Review of Thermal and Hydraulic Aspects, Tunneling Underground Space Technol., 2020, vol. 104, 103534.

    Article  Google Scholar 

  22. Brovka, A.G., Brovka, G.P., Dedyulya, I.V., and Agutin, K.A., Temperature Dependence of Thermophysical and Temperature Characteristics of Frozen Soil, Prirodopol’z., 2017, no. 31, pp. 45–49.

  23. Kurylyk, B.L. and Watanabe, K., The Mathematical Representation of Freezing and Thawing Processes in Variably-Saturated, Non-Deformable Soils, Advances in Water Resources, 2013, vol. 60, pp. 160–177.

    Article  Google Scholar 

  24. Wang, M., Zhu, Y., Zhao, T., Cui, L., Mao, W., Ye, M., and Yang, J., Chemical Characteristics of Salt Migration in Frozen Soils During the Freezing–Thawing Period, J. Hydrology, 2022, vol. 606, 127403.

    Article  Google Scholar 

  25. Leys, J., Losada-Perez, P., Glorieux, C., and Thoen, J., The Melting Behavior of Water and Water–Sodium Chloride Solutions Studied by High-Resolution Peltier–Element-Based Adiabatic Scanning Calorimetry, J. Thermal Analysis Calorimetry, 2017, vol. 129, pp. 1727–1739.

    Article  Google Scholar 

  26. Xu, J., Lan, W., Ren, C., Zhou, X., Wang, S., and Yuan, J., Modeling of Coupled Transfer of Water, Heat and Solute in Saline Loess Considering Sodium Sulfate Crystallization, Cold Regions Sci. Technol., 2021, vol. 189, 103335.

    Article  Google Scholar 

  27. Feistel, R. and Wagner, W., A New Equation of State for H2O ice IH, J. Phys. Chem. Reference Data, 2006, vol. 35, no. 2, pp. 1021–1047.

    Article  Google Scholar 

  28. Levin. L.Yu., Semin, M.A., and Parshakov, O.S., Mathematical Prediction of Frozen Wall Thickness in Shaft Sinking, Journal of Mining Science, 2017, vol. 53, no. 5, pp. 778–788.

    Article  Google Scholar 

  29. Semin, M.A., Levin. L.Yu., and Parshakov, O.S., Selection of Working Conditions and Substantiation of Operating Mode of Freezing Pipes in Maintenance of Frozen Wall Thickness, Journal of Mining Science, 202, vol. 56, no. 5, pp. 857–867.

    Article  Google Scholar 

  30. Romanova, E.K., Kurilko, A.S., and Khokholov, Yu.A., Thermal Control in Pitwall Rock Mass in Permafrost Zone Using Hydro- and Heat-Insulation, Mining Informational and Analytical Bulletin, 2015, no. S30, pp. 379–386.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Semin.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 4, pp. 98-109. https://doi.org/10.15372/FTPRPI20230411.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semin, M.A., Bublik, S.A. Phase Transitions in Saline Pore Water in Artificial Ground Freezing. J Min Sci 59, 611–620 (2023). https://doi.org/10.1134/S1062739123040117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123040117

Keywords

Navigation