Skip to main content
Log in

Stem cell niches

  • Cell Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The nature of the stem cell niche and its interaction with stem cells is one of fundamental problems in the biology of stem cells. Stem cell niches are formed during ontogeny. A niche can remain vacant and exist independently of stem cells; however, stem cell self-renewal cannot be maintained for long periods outside of the niche except for particular conditions, e.g., in vitro. A vacant niche can be occupied by excessive or transplanted stem cells and can provide for their functioning. A niche size allows a definite number of stem cells to be maintained. Excessive stem cells either differentiate in the presence of specific signal(s) or undergo apoptosis in the absence of such signal. Thus, the niches control the number of stem cells in the body and protect it from excessive stem cell proliferation. Under particular conditions, stem cells can leave and return to their niches. Stem cells are retained in the niche by cell-to-cell interactions and adhesion to the extracellular matrix. Both the niches and stem cells arise at a particular ontogenetic stage and are capable of long self-renewal. The development can be described in terms of the formation of stem cells and their niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, J.C. and Watt, F.M., Fibronectin Inhibits the Terminal Differentiation of Human Keratinocytes, Nature, 1989, vol. 340, pp. 307–309.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J.C. and Watt, F.M., Expression of β1, β3, β4, and β5 Integrins by Human Epidermal Keratinocytes and Non-Differentiating Keratinocytes, J. Cell Biol., 1991, vol. 115, pp. 829–841.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, I. and Watt, F.M., c-Myc Activation in Transgenic Mouse Epidermis Results in Mobilization of Stem Cells and Differentiation of Their Progeny, Curr. Biol., 2001, vol. 11, pp. 558–568.

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsaconas, S., Rand, M.D., and Lake, R.J., Notch Signaling: Cell Fate Control and Signal Integration in Development, Science, 1999, vol. 284, pp. 770–776.

    Article  Google Scholar 

  • Beer, H.-D., Gassmann, M.G., Munz, B., et al., Expression and Function of Keratinocyte Growth Factor and Activin in Skin Morphogenesis and Cutaneous Wound Repair, J. Invest. Dermatol. Symp. Proc., 2000, vol. 5, pp. 34–39.

    Article  CAS  Google Scholar 

  • Bijlsma, M.F., Spek, C.F., and Peppelenbosch, M.P., Hedgehog: An Unusual Signal Transducer, BioEssays, 2004, vol. 26, pp. 387–394.

    Article  PubMed  CAS  Google Scholar 

  • Blanpain, C., Lowry, W.E., Geoghegan, A., et al., Self-Renewal, Multipotency, and the Existence of Two Cell Populations within an Epithelial Stem Cell Niche, Cell, 2004, vol. 118, pp. 635–648.

    Article  PubMed  CAS  Google Scholar 

  • Botchkarev, V.A., Bone Morphogenetic Proteins and Their Antagonists in Skin and Hair Follicle Biology, J. Invest Dermatol., 2003, vol. 120, pp. 36–47.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau, N., Sympson, C., Werb, Z., and Bissell, M.J., Suppression of ICE and Apoptosis in Mammary Epithelial Cells by Extracellular Matrix, Science, 1995, vol. 267, pp. 891–893.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, S.T. and Ham, R.G., Cultivation, Frozen Storage, and Clonal Growth of Normal Human Epidermal Keratinocytes in Serum-Free Media, J. Tissue Cult. Meth., 1985, vol. 9, pp. 83–93.

    Article  Google Scholar 

  • Brash, D.E., Zhang, W., Grossman, D., and Takeuchi, S., Colonization of Adjacent Stem Cell Compartments by Mutant Keratinocytes, Semin. Cancer Biol., 2005, vol. 15, pp. 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Brinster, R.L. and Zimmermann, J.W., Spermatogenesis Following Male Germ-Cell Transplantation, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 11298–11302.

    Article  PubMed  CAS  Google Scholar 

  • Calvi, L.M., Adams, G.B., Weibrecht, K.W., et al., Osteoblastic Cells Regulate the Haematopoietic Stem Cell Niche, Nature, 2003, vol. 425, pp. 841–846.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Zhao, M., and Mundy, G.R., Bone Morphogenetic Proteins, Growth Factors, 2004, vol. 22, pp. 233–241.

    Article  PubMed  CAS  Google Scholar 

  • Chiang, C., Swan, R.Z., Grachtchouk, M., et al., Sonic Hedgehog Signaling Is Essential for Hair Development, Curr. Biol., 1998, vol. 8, pp. 1058–1068.

    Article  Google Scholar 

  • Coffey, R.J., Derynck, R., Wilcox, J.N., et al., Production and Auto-Induction of Transforming Growth Factor-α in Human Keratinocytes, Nature, 1987, vol. 328, pp. 817–820.

    Article  PubMed  CAS  Google Scholar 

  • Cotsarelis, G., Cheng, S.-Z., Dong, G., et al., Existence of Slow-Cycling Limbal Epithelial Basal Cells That Can Be Preferentially Stimulated to Proliferate: Implications on Epithelial Stem Cells, Cell, 1989, vol. 57, pp. 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Cotsarelis, G., Sun, T.-T., and Lavker, R.M., Label-Retaining Cells Reside in the Bulge of the Pilosebaceous Unit: Implications for Follicular Stem Cells, Hair Cycle, and Skin Carcinogenesis, Cell, 1990, vol. 61, pp. 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  • De Haan, G. and van Zant, G., Intrinsic and Extrinsic Control of Hematopoietic Stem Cell Numbers: Mapping of a Stem Cell Gene, J. Exp. Med., 1997, vol. 186, pp. 529–536.

    Article  PubMed  Google Scholar 

  • De Rooij, D.G., Stem Cells in the Testis, Int J. Exp. Pathol., 1998, vol. 79, pp. 67–80.

    Article  PubMed  Google Scholar 

  • Deng, W. and Lin, H., Spectrosomes and Fusomes Anchor Mitotic Spindles during Asymmetric Germ Cell Division and Facilitate the Formation of a Polarized Microtubule Array for Oocyte Specification in Drosophila, Dev. Biol., 1997, vol. 189, pp. 79–94.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, J.E. and Charbord, P., Origin and Differentiation of Human and Murine Stroma, Stem Cells, 2002, vol. 20, pp. 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Dexter, T.M., Allen, T.D., and Lajtha, L.G., Conditions Controlling the Proliferation of Haemopoietic Stem Cells in Vitro, J. Cell Physiol., 1977, vol. 91, pp. 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Drummond-Barbosa, D. and Spradling, A.C., Stem Cells and Their Progeny Respond to Nutritional Changes during Drosophila Oogenesis, Dev. Biol., 2001, vol. 231, pp. 265–278.

    Article  PubMed  CAS  Google Scholar 

  • Fan, H. and Khavari, P.A., Sonic Hedgehog Opposes Epithelial Cell Cycle Arrest, J. Cell Biol., 1999, vol. 147, pp. 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, K.J.L., McKenzie, I.A., Pleasantine, M., et al., A Aismal Niche for Multipotent Adult Skin-Derived Precursor Cells, Nature Cell Biol., 2004, vol. 6, pp. 1082–1093.

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein, A.J., Bone Marrow Osteogenic Stem Cells: In Vitro Cultivation and Transplantation in Diffusion Chambers, Cell Tissue Kinet., 1987, vol. 20, pp. 263–272.

    PubMed  CAS  Google Scholar 

  • Frisch, S.M. and Francis, H., Disruption of Epithelial Cell-Matrix Interactions Induces Apoptosis, J. Cell Biol., 1994, vol. 124, pp. 619–626.

    Article  PubMed  CAS  Google Scholar 

  • Frye, M., Gardner, C., Li, E.R., et al., Evidence That Myc Activation Depletes the Epidermal Stem Cell Compartment by Modulating Adhesive Interactions with the Local Microenvironment, Development, 2003, vol. 130, pp. 2793–2808.

    Article  PubMed  CAS  Google Scholar 

  • Galloway, J.L. and Zon, L.I., Ontogeny of Hematopoiesis: Examining the Emergence of Hematopoietic Cells in the Vertebrate Embryo, Curr. Topics Devel. Biol., 2003, vol. 53, pp. 139–157.

    Article  CAS  Google Scholar 

  • Gat, U., DasGupta, R., Degenstein, L., and Fuchs, E., De Novo Hair Follicle Morphogenesis and Hair Tumors in Mice Expressing a Truncated β-Catenin in Skin, Cell, 1998, vol. 95, pp. 605–614.

    Article  PubMed  CAS  Google Scholar 

  • Ghali, L., Wong, S.T., Tidman, N., et al., Epidermal and Hair Follicle Progenitor Cells Express Melanoma-Associated Chondroitin Sulfate Proteoglycan Core Protein, J. Invest Dermatol., 2004, vol. 122, pp. 433–442.

    Article  PubMed  CAS  Google Scholar 

  • Ghazizadeh, S. and Taichman, L.B., Organization of Stem Cells and Their Progeny in Human Epidermis, J. Invest. Dermatol., 2005, vol. 124, pp. 367–372.

    Article  PubMed  CAS  Google Scholar 

  • Gherardi, E., Gray, J., Stoker, M., et al., Purification of Scatter Factor, A Fibroblast-Derived Basic Protein That Modulates Epithelial Interactions and Movement, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 5844–5848.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, M.H., The Secret Life of the Hair Follicle, Trends Genet., 1992, vol. 8, pp. 159–166.

    Google Scholar 

  • Hardy, R.W., Tokuyasu, K.T., Lindsley, D.L., and Garawito, M., The Germinal Proliferation Center in the Testis of Drosophila melanogaster, J. Ultrastructure Res., 1979, vol. 69, pp. 180–190.

    Article  CAS  Google Scholar 

  • Harrison, D.A., McCoon, P.E., Binari, R., et al., Drosophila unpaired Encodes a Secreted Protein That Activates the JAK Signaling Pathway, Genes Dev., 1998, vol. 12, pp. 3252–3263.

    PubMed  CAS  Google Scholar 

  • Hatfield, S.D., Shcherbata, H.R., Fischer, K.A., et al., Stem Cell Division Is Regulated by the microRNA Pathway, Nature, 2005, vol. 435, pp. 974–978.

    Article  PubMed  CAS  Google Scholar 

  • Heissig, B., Hattori, K., Dias, S., et al., Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche Requires MMP-9 Mediated Release of Kit-Ligand, Cell, 2002, vol. 109, pp. 625–637.

    Article  PubMed  CAS  Google Scholar 

  • Henry, M.D. and Campbell, K.P., A Role for Dystroglycan in Basement Membrane Assembly, Cell, 1998, vol. 95, pp. 859–870.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E., Iglesias, A., Potocnik, A.J., et al., Impaired Migration but Not Differentiation of Haematopoietic Stem Cells in the Absence of β1 Integrins, Nature, 1996, vol. 380, pp. 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Huelsken, J., Vogel, R., Erdmann, B., et al., β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin, Cell, 2001, vol. 105, pp. 533–545.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, M., Yang, F.-C., Cancelea, J.A., et al., Rac2-Deficient Hematopoietic Stem Cells Show Defective Interaction with the Hematopoietic Microenvironment and Long-Term Engraftment Failure, Stem Cells, 2005, vol. 23, pp. 335–346.

    Article  PubMed  CAS  Google Scholar 

  • Kai, T. and Spradling, A., An Empty Drosophila Stem Cell Niche Reactivates the Proliferation of Ectopic Cells, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 4663–4638.

    Article  CAS  Google Scholar 

  • Kai, T. and Spradling, A., Differentiating Germ Cells Can Revert Into Functional Stem Cells in Drosophila melanogaster Ovaries, Nature, 2004, vol. 428, pp. 564–569.

    Article  PubMed  CAS  Google Scholar 

  • Kameda, T., Hatakeyama, S., Ma, Y.-Z., et al., Targeted Elimination of the Follicular Label-Retaining Cells by Photo-Induced Cell Killing Caused a Defect on Follicular Renewal on Mice, Genes Cells, 2002, vol. 7, pp. 923–932.

    Article  PubMed  CAS  Google Scholar 

  • Kameda, T., Nakata, A., Mizutani, T., et al., Analysis of the Cellular Heterogeneity in the Basal Layer of Mouse Ear Epidermis: An Approach from Partial Decomposition in Vitro and Retroviral Cell Marking in Vivo, Exp. Cell Res., 2003, vol. 283, pp. 167–183.

    Article  PubMed  CAS  Google Scholar 

  • Kehler, J., Tolkunova, E., Koschorz, B., et al., Oct4 Is Required for Primordial Germ Cell Survival, EMBO Rep., 2004, vol. 5, pp. 1078–1083.

    Article  PubMed  CAS  Google Scholar 

  • Khrushchov, G.K. and Brodsky, V.Ya., Organ and Cell (Certain Problems of Cytology and Histology), Usp. Sovrem. Biol., 1961, vol. 52, no. 2(5), 181–207.

    PubMed  CAS  Google Scholar 

  • Kiger, A.A., Jones, D.L., Schulz, C., et al., Stem Cell Self-Renewal Specified by JAK-STAT Activation in Response to a Support Cell Cue, Science, 2001, vol. 294, pp. 2542–2545.

    Article  PubMed  CAS  Google Scholar 

  • Kiger, A.A., White-Cooper, H., and Fuller, M.T., Somatic Support Cells Restrict Germline Stem Cell Self-Renewal and Promote Differentiation, Nature, 2000, vol. 407, pp. 750–754.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, K., Rochat, A., and Barrandon, Y., Segregation of Keratinocyte Colony-Forming Cells in the Bulge of the Rat Vibrissa, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 7391–7395.

    Article  PubMed  CAS  Google Scholar 

  • Korinek, V., Barker, N., Moerer, P., et al., Depletion of Epithelial Stem-Cell Compartments in the Small Intestine of Mice Lacking Tcf-4, Nat. Genet., 1998, vol. 19, pp. 379–384.

    Article  PubMed  CAS  Google Scholar 

  • Krause, D.S., Theise, N.D., Collector, M.I., et al., Multi-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell, Cell, 2001, vol. 1054, pp. 369–377.

    Article  Google Scholar 

  • Lin, H. and Spradling, A.C., Germline Stem Cell Division and Egg Chamber Development in Transplanted Drosophila germaria, Dev. Biol., 1993, vol. 159, pp. 140–152.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H., The Tao of Stem Cells in the Germline, Annu. Rev. Genet., 1997, vol. 31, pp. 455–491.

    Article  PubMed  CAS  Google Scholar 

  • Lord, B.I., Testa, N.G., and Hendry, J.H., The Relative Spatial Distributions of CFUs and CFUc in the Normal Mouse Femur, Blood, 1975, vol. 46, pp. 65–72.

    PubMed  CAS  Google Scholar 

  • Lowell, S., Jones, P., Le Roux I., et al. Stimulation of Human Epidermal Differentiation by Delta-Notch Signaling at the Boundaries of Stem-Cell Cluster, Current Biol., 2000, vol. 10, pp. 491–500.

    Article  CAS  Google Scholar 

  • Maas-Szabowski, N., Shimotoyodome, A., and Fusenig, N.E., Keratinocyte Growth Regulation in Fibroblast Cocultures Via a Double Paracrine Mechanism, J. Cell Sci., 1999, vol. 112, pp. 1843–1853.

    PubMed  Google Scholar 

  • Maas-Szabowski, N., Stark, H-J., and Fusenig, N.E., Keratinocyte Growth Regulation in Defined Organotypic Cultures Through IL-1-Induced Keratinocyte Growth Factor Expression in Resting Fibroblasts, J. Invest. Dermatol., 2000, vol. 114, pp. 1075–1084.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, S., Tsuji, K., Hisakawa, H., et al., Generation of Definitive Hematopoietic Stem Cells from Murine Early Yolk Sac and Paraaortic Splanchnopleures by Aorta-Gonad-Mesonephros Region-Derived Stromal Cells, Blood, 2001, vol. 98, pp. 6–12.

    Article  PubMed  CAS  Google Scholar 

  • McCall, C.A. and Cohen, J.J., Programmed Cell Death in Terminally Differentiating Keratinocytes: Role of Endogenous Endonuclease, J. Invest. Dermatol., 1991, vol. 97, pp. 111–115.

    Article  PubMed  CAS  Google Scholar 

  • Meredith, J.E. and Schwartz, M.A., Integrins, Adhesion and Apoptosis, Trends Cell Biol., 1997, vol. 7, pp. 146–150.

    Article  CAS  PubMed  Google Scholar 

  • Merill, B.J., Gat, U., DasGupta, R., et al., Tcf3 and Lef1 Regulate Lineage Differentiation of Multipotent Stem Cells in Skin, Genes Dev., 2001, vol. 15, pp. 1688–1705.

    Article  Google Scholar 

  • Meyer, T.C., The Migratory Pathway of Neural Crest Cells Into the Skin of Mouse Embryo, Devel. Biol., 1973, vol. 34, pp. 39–46.

    Article  Google Scholar 

  • Moro, L., Venturino, M., Bozzo, C., et al., Integrins Induce Activation of EGF Receptor: Role in MAP Kinase Induction and Adhesion-Dependent Cell Survival, EMBO J., 1998, vol. 17, pp. 6622–6632.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, S.J., Hemmati, H.D., Wandycz, A.M., and Weissman, I.L., The Purification and Characterization of Fetal Liver Hematopoietic Stem Cells, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 10302–10306.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, S.J., Uchida, N., and Weissman, I.L., The Biology of Hematopoietic Stem Cells, Annu. Rev. Cell Biol., 1994, vol. 11, pp. 35–71.

    Google Scholar 

  • Munger, J.S., Harpel, J.G., Giancotti, F.G., and Rifkin, D.B., Interactions between Growth Factors and Integrins: Latent Forms of Transforming Growth Factor-β Are Ligands for the Integrin αVβ1, Molec. Biol. Cell, 1998, vol. 9, pp. 2627–2638.

    PubMed  CAS  Google Scholar 

  • Nishimura, E.K., Jordans, S.A., Oshima, H., et al., Dominant Role of the Niche in Melanocyte Stem-Cell Fate Determination, Nature, 2002, vol. 416, pp. 854–860.

    Article  PubMed  CAS  Google Scholar 

  • Nutterman, C.R., Tripodi, M.C., and Anseth, K.S., Synthetic Hydrogel Niches That Promote hMSC Viability, Matrix Biol., 2005, vol. 24, pp. 208–218.

    Article  CAS  Google Scholar 

  • Orwig, K.E., Awarbock, M.R., and Brinster, R.L., Retrovirus-Mediated Modification of Male Germline Stem Cells in Rats, Biol. Reprod., 2002, vol. 67, pp. 874–879.

    Article  PubMed  CAS  Google Scholar 

  • Panayotou, G., End, P., Aumailley, M., et al., Domains of Laminin with Growth Factor Activity, Cell, 1989, vol. 56, pp. 93–101.

    Article  PubMed  CAS  Google Scholar 

  • Park, I-K., Quian, D., Kiel, M., et al., Bmi-1 Is Required for Maintenance of Adult Self-Renewing Haematopoietic Stem Cells, Nature, 2003, vol. 423, pp. 302–305.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, M., Green, M.R., Langdon, J.D., and Feldman, M., Production of TGF-α and TGF-β by Cultured Keratinocytes, Skin and Oral Squamous Cell Carcinomas—Potential Autocrine Regulation of Normal and Malignant Epithelial Cell Proliferation, Brit. J. Cancer, 1989, vol. 60, pp. 542–548.

    PubMed  CAS  Google Scholar 

  • Pierce, G.F., Yanagihara, D., Klopchin, K., et al., Stimulation of All Epithelial Elements During Skin Regeneration by Keratinocyte Growth Factor, J. Exp. Med., 1994, vol. 179, pp. 831–840.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, G.F., Yanagihara, D., Klopchin, K., et al., Wnt Control of Stem Cells and Differentiation in the Intestinal Epithelium, Exp. Cell Res., 2005, vol. 306, pp. 357–363.

    Article  CAS  Google Scholar 

  • Pituch-Noworolska, A., Majka, M., Janowska-Wieczorek, A., et al., Circulating CXCR4-Positive Stem/Progenitor Cell Compete for SDF-1 Positive Niches in Bone Marrow, Muscle and Neural Tissues: An Alternative Hypothesis to Stem Cell Plasticity, Folia Histochem. Cytobiol., 2003, vol. 41, pp. 13–21.

    PubMed  Google Scholar 

  • Potten, C.S., The Epidermal Proliferative Unit: The Possible Role of the Central Basal Cell, Cell Tissue Kinet., 1974, vol. 7, pp. 77–88.

    PubMed  CAS  Google Scholar 

  • Potten, C.S., Owen, G., and Roberts, S.A., The Temporal and Spatial Changes in Cell Proliferation within the Irradiated Crypts of Murine Small Intestine, Int. J. Radiat. Biol., 1990, vol. 57, pp. 5441–5449.

    Google Scholar 

  • Potten, C.S., Schofield, R., and Lajtha, L.G., A Comparison of Cell Replacement in Bone Marrow, Testis and Three Regions of Surface Epithelium, Biochim. Biophys. Acta, 1979, vol. 560, pp. 281–299.

    PubMed  CAS  Google Scholar 

  • Ramalho-Santos, M., Melton, D.A., and McMahon, A.P., Hedgehog Signals Regulate Multiple Aspects of Gastrointestinal Development, Development, 2000, vol. 127, pp. 2763–2772.

    PubMed  CAS  Google Scholar 

  • Reya, T. and Clevers, H., Wnt Signalling in Stem Cells and Cancer, Nature, 2005, vol. 434, pp. 843–850.

    Article  PubMed  CAS  Google Scholar 

  • Reya, T., Duncan, A.W., Ailles, L., et al., A Role for Wnt Signaling in Self-Renewal of Haematopoietic Stem Cells, Nature, 2003, vol. 423, pp. 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, A.J. and Jahoda, C.A., Hair Follicle Stem Cells A Distinct Germinative Epidermal Cell Population Is Activated in Vitro by the Presence of Hair Dermal Papilla Cells, J. Cell Sci., 1991, vol. 99, pp. 373–385.

    PubMed  Google Scholar 

  • Rheinwald, J.G. and Green, H., Serial Cultivation of Strains of Human Epidermal Keratinocytes: The Formation of Keratinizating Colonies from Single Cells, Cell, 1975, vol. 6, pp. 331–344.

    Article  PubMed  CAS  Google Scholar 

  • Rodeck, U., Jost, M., Kari, C., et al., EGF-R Dependent Regulation of Keratinocyte Survival, J. Cell Sci., 1997, vol. 110, pp. 113–121.

    PubMed  CAS  Google Scholar 

  • Savill, N.J. and Sherratt, J.A., Control of Epidermal Stem Cell Clusters by Notch-Mediated Lateral Induction, Devel. Biol., 2003, vol. 258, pp. 141–153.

    Article  CAS  Google Scholar 

  • Schofield, R., The Relationship between the Spleen Colony-Forming Cell and the Haemopoietic Stem Cell, Blood Cells, 1978, vol. 4, pp. 7–25.

    PubMed  CAS  Google Scholar 

  • Shinohara, T., Avarbock, M.R., and Brinster, R.L., β1-and α6-Integrin Are Surface Markers on Mouse Spermatogonial Stem Cells, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 5504–5509.

    Article  PubMed  CAS  Google Scholar 

  • Song, X. and Xie, T., DE-Cadherin-Mediated Cell Adhesion Is Essential for Maintaining Somatic Stem Cells in the Drosophila Ovary, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 14813–14818.

    Article  PubMed  CAS  Google Scholar 

  • Song, X., Zhu, C.H., Doan, C., and Xie, T., Germline Stem Cell Anchored by Adherens Junctions in the Drosophila Ovary Niches, Science, 2002, vol. 296, pp. 1855–1857.

    Article  PubMed  CAS  Google Scholar 

  • Sonnenberg, E., Meyer, D., Weidner, K.M., and Birchmeier, C., Scatter Factor/Hepatocyte Growth Factor and Its Receptor, the C-Met Tyrosine Kinase, Can Mediate a Signal Exchange Between Mesenchyme and Epithelia During Mouse Development, J. Cell Biol., 1993, vol. 123, pp. 223–235.

    Article  PubMed  CAS  Google Scholar 

  • Spangrude, G.J., Brooks, D.M., and Tomas, D.B., Long-Term Repopulation of Irradiated Mice with Limiting Numbers of Purified Hematopoietic Stem Cells: in Vivo Expansion of Stem Cell Phenotype but Not Function, Blood, 1995, vol. 85, pp. 1006–1016.

    PubMed  CAS  Google Scholar 

  • Spradling, A., Drummond-Barbosa, D., and Kai, T., Stem Cells Find Their Niche, Nature, 2001, vol. 414, pp. 98–104.

    Article  PubMed  CAS  Google Scholar 

  • Stepp, M.A., Spurr-Michaud, S., Tisdale, A., et al., α6 β4 Integrin Heterodimer Is a Component of Hemidesmosomes, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 8970–8974.

    Article  PubMed  CAS  Google Scholar 

  • Stone, D.M., Hynes, M., Armanini, M., et al., The Tumour-Suppressor Gene Patched Encodes a Candidate Receptor for Sonic Hedgehog, Nature, 1996, vol. 384, pp. 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Streuli, C., Extracellular Matrix Remodeling and Cellular Differentiation, Curr. Opin. Cell Biol., 1999, vol. 11, pp. 634–640.

    Article  PubMed  CAS  Google Scholar 

  • Sulston, J.E., Schierenberg, E., White, J.G., and Thomson, J.N., The Embryonic Cell Lineage of the Nematode Caenorhabditis elegans, Dev. Biol., 1983, vol. 100, pp. 64–119.

    Article  PubMed  CAS  Google Scholar 

  • Symington, B.E., Takada, Y., and Carter, W.G., Interaction of Integrins α3β1 and α2β1: Potential Role in Keratinocyte Intercellular Adhesion, J. Cell Biol., 1993, vol. 120, pp. 523–535.

    Article  PubMed  CAS  Google Scholar 

  • Taichman, R.S. and Emerson, S.G., Human Osteoblasts Support Hematopoiesis Through the Production of Granulocyte Colony-Stimulating Factor, J. Exp. Med., 1994, vol. 179, pp. 1677–1682.

    Article  PubMed  CAS  Google Scholar 

  • Taichman, R.S., Reilly, M., and Emerson, S., The Hematopoietic Microenvironment: Osteoblasts and the Hematopoietic Microenvironment, Hematology, 2000, vol. 4, pp. 421–426.

    PubMed  Google Scholar 

  • Taichman, R.S., Reilly, M., Verma, R., et al., Hepatocyte Growth Factor Is Secreted by Osteoblasts and Cooperatively Permits the Survival of Haematopoietic Progenitors, Br. J. Haematol., 2001, vol. 112, pp. 438–448.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, G., Lehrer, M.S., Jensen, P.J., et al., Involvement of Follicular Stem Cells in Forming Not Only the Follicle but Also the Epidermis, Cell, 2000, vol. 102, pp. 451–461.

    Article  PubMed  CAS  Google Scholar 

  • Terskikh, V.V., Vasil’ev, A.V., and Vorotelyak, E.A., Structural-Functional Units of Epidermis, Izv. Akad. Nauk. Ser. Biol., 2003, no. 6, pp. 645–649.

  • Thomas, E.D., Frontiers in Bone Marrow Transplantation, Blood Cells, 1991, vol. 17, pp. 259–267.

    PubMed  CAS  Google Scholar 

  • Till, J.E. and McCulloch, E.A., A Direct Measurement of the Radiation Sensitivity of Normal Mouse Bone Marrow Cells, Radiat. Res., 1961, vol. 14, pp. 213–221.

    Article  PubMed  CAS  Google Scholar 

  • Torrente, Y., Camirand, G., Pisati, F., et al., Identification of a Putative Pathway for the Muscle Homing of Stem Cells in a Muscular Dystrophy Model, J. Cell Biol., 2003, vol. 162, pp. 511–520.

    Article  PubMed  CAS  Google Scholar 

  • Tran, J., Brenner, T., and DiNardo, S., Somatic Control Over the Germline Stem Lineage during Drosophila Spermatogenesis, Nature, 2000, vol. 407, pp. 754–757.

    Article  PubMed  CAS  Google Scholar 

  • Tulina, N. and Matunis, E., Control of Stem Cell Self-Renewal in Drosophila Spermatogenesis by JAK-STAT Signaling, Science, 2001, vol. 294, pp. 2546–2549.

    Article  PubMed  CAS  Google Scholar 

  • Uitto, J. and Pulkkinen, L., Molecular Complexity of the Cutaneous Basement Membrane Zone, Molec. Biol. Rep., 1996, vol. 23, pp. 35–46.

    Article  CAS  Google Scholar 

  • Van Es, J.H., van Gijn, M.E., Riccio, O., et al., Notch/G-Secretase Inhibition Turns Proliferative Cells in Intestinal Crypts and Adenomas into Goblet Cells, Nature, 2005, vol. 435, pp. 959–963.

    Article  PubMed  CAS  Google Scholar 

  • Warrior, R., Primordial Germ Cell Migration and the Assembly of the Drosophila Embryonic Gonad, Devel. Biol., 1994, vol. 166, pp. 180–194.

    Article  CAS  Google Scholar 

  • Whetton, A.D. and Graham, G.J., Homing and Mobilization in the Stem Cell Niche, Trends Cell Biol., 1999, vol. 9, pp. 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Wilke, M.S. and Furcht, L.T., Human Keratinocytes Adhere to a Unique Heparin-Binding Peptide Sequence within the Triple Helical Region of Type IV Collagen, J. Invest. Dermatol., 1990, vol. 95, pp. 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Willert, K., Brown, J., Danenberg, E., et al., Wnt Proteins Are Lipid-Modified and Can Act as Stem Cell Growth Factors, Nature, 2003, vol. 423, pp. 448–452.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, P.A. and Hemmati-Brivanlou, A., Induction of Epidermis and Inhibition of Neural Fate by Bmp-4, Nature, 1995, vol. 376, pp. 331–333.

    Article  PubMed  CAS  Google Scholar 

  • Winton, D.J., Blount, M.A., and Ponder, B.A., A Clonal Marker Induced by Mutation in Mouse Intestinal Epithelium, Nature, 1988, vol. 333, pp. 463–466.

    Article  PubMed  CAS  Google Scholar 

  • Wright, N.A., Epithelial Stem Cell Repertoire in the Gut: Clues to the Origin of Cell Lineages, Proliferative Units and Cancer, Int. J. Exper. Pathol., 2000, vol. 81, pp. 117–143.

    Article  CAS  Google Scholar 

  • Xie, T. and Spradling, A.C., Decapentaplegic Is Essential for the Maintenance and Division of Germline Stem Cells in the Drosophila Ovary, Cell, 1998, vol. 94, pp. 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Niu, C., Ye, L., et al., Identification of the Haematopoietic Stem Cell Niche and Control of the Niche Size, Nature, 2003, vol. 425, pp. 836–841.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Remenyik, E., Zelterman, D., et al., Escaping the Stem Cell Compartment: Sustained UVB Exposure Allows p53-Mutant Keratinocytes to Colonize Adjacent Epidermal Proliferating Units Without Incurring Additional Mutations, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 13948–13953.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y. and Kalderon, D., Hedgehog Acts as a Somatic Stem Cell Factor in the Drosophila Ovary, Nature, 2001, vol. 410, pp. 599–604.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Terskikh, A.V. Vasiliev, E.A. Vorotelyak, 2007, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2007, No. 3, pp. 261–272.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terskikh, V.V., Vasiliev, A.V. & Vorotelyak, E.A. Stem cell niches. Biol Bull Russ Acad Sci 34, 211–220 (2007). https://doi.org/10.1134/S1062359007030016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359007030016

Keywords

Navigation