Skip to main content
Log in

Detection of explosives by ion mobility spectrometry

  • Reviews
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Ion mobility spectrometry is an effective method for detecting mine-explosive devices and explosive charges and for revealing objects and peoples who came into contact with explosives. This is because of the excellent analytical and performance characteristics of the corresponding instruments. In the present work, we described the objects to be detected, formulated the basic terms and definitions, considered the physicochemical basics of the separation of ions by their mobility in a gas under an electric field, and presented experimental data on the main analytical characteristics of spectrometers: their ability to identify analytes, resolution power, time to provide readings, sensitivity, and detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cundall, R.B., Palmer, T.F., and Wood, C.E.C., J. Chem. Soc., Faraday Trans., 1981, vol. 77, p. 711.

    Article  Google Scholar 

  2. Dionne, B.C., Rounbehler, D.P., Achter, E.K., Hobbs, J.R., and Fine, D.H., J. Energ. Mater., 1986, vol. 4, p. 447.

    Article  CAS  Google Scholar 

  3. Pella, P.A., Anal. Chem., 1976, vol. 48, no. 11, p. 1632.

    Article  CAS  Google Scholar 

  4. McGann, W., Jenkins, A., and Ribeiro, K., Proc. 1st Int. Symp. on Explosive Detection Technology, Atlantic City, NJ, 1991, p. 518.

  5. Oxley, J.C., Smith, J.L., Luo, Wei., and Brady, J., Propellants, Explos., Pyrotech., 2009, vol. 34, no. 6, p. 539.

    Article  CAS  Google Scholar 

  6. Oxley, J.C., Smith, J.L., Shinde, K., and Moran, J., Propellants, Explos., Pyrotech. 2005, vol. 30, no. 2, p. 127.

    Article  CAS  Google Scholar 

  7. Lenchitz, C. and Velicky, R.W., J. Chem. Eng. Data, 1970, vol. 15, p. 401.

    Article  CAS  Google Scholar 

  8. Lawrence, AH., Neudorfl, P., and Stone, J.A., Int. J. Mass Spectrom., 2001, vol. 209, p. 185.

    Article  CAS  Google Scholar 

  9. Jones, D.E.G., Augsten, R.A., and Feng, K.K., J. Therm. Anal., 1995, vol. 44, p. 533.

    Article  CAS  Google Scholar 

  10. Altschuh, J., Bruggemann, R., Santl, H., Eichinger, G., and Piringer, O.G., Chemosphere, 1999, vol. 39, p. 1871.

    Article  CAS  Google Scholar 

  11. Spanggord, R.J., Mill, T., Chou, T.-W., Mabey, W.R., Smith, J.H., and Lee, S., Final report, Phase I, Lit Rev. SRI project no. LSU-7934, Contract no. DAMD 17-78-C-8081, Fort Detrick, MC: US Army Med. Res. Develop. Cmnd., 1980, Hazardous Substances Data Bank.

    Google Scholar 

  12. Furton, K.G. and Myers, L.J., Talanta, 2001, vol. 54, p. 487.

    Article  CAS  Google Scholar 

  13. Murrmann, R.P., Jenkins, T.F., and Leggett, D.C., USA Cold Regions Research and Engineering Laboratory, Special Report, 1971.

  14. Leggett, D.C., Jenkins, T.F., and Murrmann, R.P., Corps of Engineers. U.S. Army. Cold Regions Research and Engineering Laboratory, Hanover, Special Report, 1977.

  15. Gresham, G.L., Davies, J.P., Goodrich, L.D., Blackwood, L.G., Liu, B.Y.H.D., Thimsem, S., Yoo, H., and Hallowell, S.F., Proc. SPIE-Int. Soc. Opt. Eng., 1994, vol. 2276, p. 34.

    CAS  Google Scholar 

  16. Soldatov, V.P., Kuznetsov, V.V., Morozov, A.A., Kuzakov, A.A., and Ovechkin, A.I., USSR Inventor’s Certificate no. 969089, 1981.

  17. Gorbachev, Yu.P., Ionov, V.V., and Kolomiets, Yu.N., RF Patent 2279051, 2006.

  18. Gorbachev, Yu.P., Ionov, V.V., and Kolomiets, Yu.N., RF Patent 2325628, 2007.

  19. Volchkov, E.P., Terekhov, V.I., Spotar’, S.Yu., Boyarshinov, B.F., et al., Gidrodinamika i massoobmen probootbornogo ustroistva gazoanalizatora (Hydrodynamics and Mass Transfer of the Sampling Device of Gas Analyzer), Report F-33-83, Novosibirsk: Novosib. Gos. Univ., 1983.

    Google Scholar 

  20. Krasnobaev, L.Y., Persenkov, V.S., Belyakov, V.V., Kekukh, V.B., and Bunker, N.S., US Patent 6828795, 2004.

  21. Krasnobaev, L.Y. and Bunker, N.S., US Patent 6870155, 2005.

  22. Belyakov, V.V. and Bunker, N.S., US Patent 7098672, 2006.

  23. Elias, L., US Patent 4698071, 1987.

  24. Nanji, A.A., US Patent 4988628, 1991.

  25. Spangler, G.E., US Patent 5083019, 1992.

  26. Perr, J.M., Furton, K.G., and Almirall, J.R., J. Sep. Sci., 2005, vol. 28, no. 2, p. 177.

    Article  CAS  Google Scholar 

  27. Danylewych-May, L. and Davies, J.H., US Patent 5859375, 1999.

  28. Bromberg, E.E.A., Jarvis, G.B., LeBlanc, K.E., Wendel, G.J., Wong, C., and Sonin, A.A., US Patent 5753832, 1998.

  29. Danylewych-May, L., Davies, J.H., Kuja, F., and Nacson, S., US Patent 6619143, 2003.

  30. Chambers, W.B., Rodacy, P.J., Jones, E.E., Gomes, B.J., and Woodfin, R.L., Chemical Sensing System for Classification of Mine-Like Objects by Explosives Detection, Report SAND-98-0923C, Sandia Natl. Lab., Albuquerque, NM, 1998.

    Google Scholar 

  31. Buxton, T.L. and Harrington, P.D., Appl. Spectrosc., 2003, vol. 57, p. 223.

    Article  CAS  Google Scholar 

  32. McGown, J.B., Bromberg, E.E.A., and Noble, L.W., US Patent 4909090, 1990; Corrigan, C.D., Haley, L.V., and Menagh, D.P., US Patent 4987767, 1991.

  33. Huang, S.D., Kolaitis, L., and Lubman, D.M., App. Spectrosc., 1987, vol. 41, no. 8, p. 1371.

    Article  CAS  Google Scholar 

  34. Nguyen, D.H., Berry, S., Christensen, D.L., and Klymowsky, C., US Patent 6797944, 2004.

  35. Laiko, V.V. and Burlingame, A.L., US Patent 5965884, 1999.

  36. Alimpiev, S.S., Nikiforov, S.M., Grechnikov, A.A., Karavanskii, V.A., and Simanovskii, Ya.O., RF Patent 2285253, 2006.

  37. Furutani, H., Ugarov, M.V., Prather, K., and Schultz, J.A., US Patent 7170052, 2007.

  38. Kanu, A.B., Dwivedi, P., Tam, M., Matz, L., and Hill, H.H., J. Mass Spectrom., 2008, vol. 43, p. 1.

    Article  CAS  Google Scholar 

  39. Karasek, F.W. and Keller, R.A., J. Chromatogr. Sci., 1972, vol. 10, p. 626.

    CAS  Google Scholar 

  40. Conrad, F.J., US Patent 5138889, 1992.

  41. Buryakov, I.A., Kolomiets, Yu.N., and Louppou, V.B., Int. J. Ion Mobility Spectrom., 2001, vol. 4, p. 13.

    CAS  Google Scholar 

  42. Buryakov, I.A., J. Chromatogr. B, 2004, vol. 800, p. 75.

    Article  CAS  Google Scholar 

  43. Karasek, F.W. and Denney, D.W., J. Chromatogr. A, 1974, vol. 93, no. 1, p. 141.

    Article  CAS  Google Scholar 

  44. Louis, R.H. and Hill, H.H., Crit. Rev. Anal. Chem., 1990, vol. 21, no. 5, p. 334.

    Article  Google Scholar 

  45. Budovich, V.L., Mikhailov, A.A., and Arnold, G., US Patent 5969349, 1998.

  46. Arnold, G., Budovich, V.L., and Mikhailov, A.A., RF Patent 2117939, 1998.

  47. Dzidic, I., Carrol, D.I., and Stillwell, R.N., Anal. Chem., 1976, vol. 48, no. 12, p. 1763.

    Article  CAS  Google Scholar 

  48. Khayamian, T., Tabrizchi, M., and Jafari, M.T., Talanta, 2003, vol. 59, p. 327.

    Article  CAS  Google Scholar 

  49. Taylor, S.J., Turner, R.B., and Arnold, P.D., US Patent 5684300, 1997.

  50. Siegel, M.W. and Fite, W.L., J. Phys. Chem., 1976, vol. 80, p. 2871.

    Article  CAS  Google Scholar 

  51. Spangler, G.E. and Carrico, J.P., Int. J. Mass Spectrom. Ion Physics, 1983, vol. 52, p. 267.

    Article  CAS  Google Scholar 

  52. Spangler, G.E. and Cox, J.N., US Patent 4551624, 1985.

  53. Proctor, C.J. and Todd, J.F.J., Anal. Chem., 1984, vol. 56, p. 1794.

    Article  CAS  Google Scholar 

  54. Marr, A.J. and Groves, D.M., Int. J. Ion Mobility Spectrom., 2003, vol. 6, p. 59.

    CAS  Google Scholar 

  55. Daum, K.A., Atkinson, D.A., and Ewing, R.G., Talanta, 2001, vol. 55, p. 491.

    Article  CAS  Google Scholar 

  56. Daum, K.A., Atkinson, D.A., and Ewing, R.G., Int. J. Mass Spectrom. Ion Processes, 2002, vol. 214, p. 257.

    CAS  Google Scholar 

  57. Clark, A., Deas, R.M., Kosmidis, C., Ledingham, W.D., Marshall, A., and Singhal, R.P., AIP Conf. Proc., 1995, vol. 329, no. 1, p. 259.

    Article  CAS  Google Scholar 

  58. Kotkovskii, G.E., Tugaenko, A.V., and Chistyakov, A.A., Pis’ma Zh. Tekh. Fiz., 2010, vol. 36, no. 6, p. 60 [Tech. Phys. Lett. (Engl. Transl.), vol. 36, no. 3, p. 276].

    Google Scholar 

  59. Lubman, D.M., Technical Report ADA244817, Ann Arbor, MI: University of Michigan, 1991.

    Google Scholar 

  60. Walls, C.J., Swenson, O.F., and Gillispie, G.D., Eds. SPIE, 1999, vol. 3534, p. 290.

    Article  CAS  Google Scholar 

  61. Spangler, G.E., Roehl, J.E., and Patel, G.B., Patent USA 5338931, 1994.

  62. Mullen, C., Irwin, A., Pond, B.V., Huestis, D.L., Coggiola, M.J., and Oser, H., Anal. Chem., 2006, vol. 78, p. 3807.

    Article  CAS  Google Scholar 

  63. Zhu, J., Lustig, D., Sofer, I., and Lubman, D.M., Anal. Chem., 1990, vol. 62, p. 2225.

    Article  CAS  Google Scholar 

  64. Pond, B.V., Mullen, C., Suarez, I., Kessler, J., Briggs, K., Young, S.E., Coggiola, M.J., Crosley, D.R., and Oser, H., Appl. Phys., B, 2007, p. 735.

  65. Swenson, O.F., AFRL-ML-TY-TR-2001-0051, 2001.

  66. Song, L., Wellman, A.D., Yao, H., and Bartmess, J.E., J. Am. Soc. Mass Spectrom., 2007, vol. 18, no. 10, p. 1789.

    Article  CAS  Google Scholar 

  67. Swenson, O.F. and Hong, F., US Patent 7304298, 2007.

  68. Korolenko, I.I., Lozinskii, V.I., Sobolev, A.V., Fesenko, A.V., Chebyshev, A.V., Chuiko, K.K., and Shumilkin, A.V., RF Patent 2066449, 1996.

  69. Kapustin, V.I., RF Patent 2293977, 2006.

  70. Kapustin, V.I., Petrov, V.S., and Chernousov, A.A., Pis’ma Zh. Tekh. Fiz., 2004, vol. 30, no. 17, p. 19 [Tech. Phys. Lett. (Engl. Transl.), vol. 30, no. 9, p. 717].

    Google Scholar 

  71. Zandberg, E.Ya. and Rasulev, U.Kh., Usp. Khim., 1982, vol. 51, no. 9, p. 1425.

    CAS  Google Scholar 

  72. Asbury, G.R., Klasmeier, J., and Hill, H.H., Talanta, 2000, vol. 50, no. 6, p. 1291.

    Article  CAS  Google Scholar 

  73. Krueger, C.A., Hilton, C.K., Osgood, M., Wu, J., and Wu Ching, Int. J. Mass Spectrom. Ion Processes, 2009, vol. 12, no. 1, p. 33.

    CAS  Google Scholar 

  74. Aleksandrov, M.L., Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., and Shkurov, V.A., Dokl. Akad. Nauk, 1984, vol. 277, no. 2, p. 379.

    CAS  Google Scholar 

  75. Yamashita, M. and Fenn, J.B., J. Phys. Chem., 1984, vol. 88, p. 4451.

    Article  CAS  Google Scholar 

  76. Tam, M. and Hill, H.H., Anal. Chem., 2004, vol. 76, p. 2741.

    Article  CAS  Google Scholar 

  77. Spangler, G.E. and Lawless, P.A., Anal. Chem., 1978, vol. 50, p. 884.

    Article  CAS  Google Scholar 

  78. Huang, S.D., Kolaitis, L., and Lubman, D.M., App. Spectrosc., 1987, vol. 41, p. 1371.

    Article  CAS  Google Scholar 

  79. Boock, J.J., Technical Report ADA468495, Gainesville, FL: University of Florida, 2007.

    Google Scholar 

  80. Lawrence, A.H. and Neudorfl, P., Anal. Chem., 1988, vol. 60, p. 104.

    Article  CAS  Google Scholar 

  81. Marr, A.J. and Groves, D.M., Int. J. Ion Mobility Spectrom., 2003, vol. 6, p. 59.

    CAS  Google Scholar 

  82. Munro, W.A., Thomas, C.L.P., and Langford, M.L., Anal. Chim. Acta, 1998, vol. 374, p. 253.

    Article  CAS  Google Scholar 

  83. Dantus, M., Lozovoy, V.V., Zhu Xin, and Gunaratne, T., Proc. SPIE, 2008, vol. 6954, p. 69540.

    Article  Google Scholar 

  84. Mullen, C., Coggiola, M.J., and Oser, H., J. Am. Soc. Mass Spectrom., 2009, vol. 20, p. 419.

    Article  CAS  Google Scholar 

  85. Lemire, G.W., Simeonsson, J.B., and Sausa, RC., Anal. Chem., 1993, vol. 65, p. 529.

    Article  CAS  Google Scholar 

  86. Sausa, R.C., Swayambunathan, V., and Singh, G., Technical Report ARL-TR-2387, 2001.

  87. Buttigieg, G.A., Knight, A.K., Denson, S., Pommier, C., and Denton, M.B., Forensic Sci. Int., 2003, vol. 135, p. 53.

    Article  CAS  Google Scholar 

  88. Martinez-Lozano, P., Rus, J., Fernandez De La Mora, G., Hernandez, M., and Fernandez De La Mora, J., J. Am. Soc. Mass Spectrom., 2009, vol. 20, no. 2, p. 287.

    Article  CAS  Google Scholar 

  89. Mason, E.A. and McDaniel, E.W., Transport Properties of Ions in Gases, New York: Wiley, 1988.

    Book  Google Scholar 

  90. Cohen, M.J., US Patent 3593018, 1971.

  91. Eiceman, G.A. and Karpas, Z., Ion Mobility Spectrometry, Boca Raton, FL: CRC Press, 2005, 2nd ed.

    Book  Google Scholar 

  92. Gorshkov, M.P., USSR Inventor’s Certificate no. 966583, 1982.

  93. Buryakov, I.A., Krylov, E.V., Makas’, A.L., Nazarov, E.G., Pervukhin, V.V., and Rasulev, U.Kh., Pis’ma Zh. Tekh. Fiz., 1991, vol. 17, no. 12, p. 60.

    CAS  Google Scholar 

  94. Buryakov, I.A., Krylov, E.V., Nazarov, E.G., and Rasulev, U.K., Int. J. Mass Spectrom. Ion Processes, 1993, vol. 128, p. 143.

    Article  CAS  Google Scholar 

  95. Shvartsburg, A.A., Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS, Boca Raton, FL: CRC Press, 2009.

    Google Scholar 

  96. Siems, W.F., Wu Ching, Tarver, E.E., and Hill, H.H., Anal. Chem., 1994, vol. 66, p. 4195.

    Article  CAS  Google Scholar 

  97. Spangler, G.E., Int. J. Mass Spectrom. Ion Processes, 2002, vol. 220, p. 399.

    CAS  Google Scholar 

  98. Buryakov, I.A., Krylov, E.V., and Soldatov, V.P., USSR Inventor’s Certificate no. 1485808, 1987.

  99. Guevremont, R. and Purves, R., Rev. Sci. Inetrum, 1999, vol. 70, p. 1370.

    Article  CAS  Google Scholar 

  100. Guevremont, R. and Purves, R., J. Am. Soc. Mass Spectrom., 2005, vol. 16, p. 349.

    Article  CAS  Google Scholar 

  101. Buryakov, I.A., Tech. Phys., 2006, vol. 51, no. 9, p. 1121.

    Article  CAS  Google Scholar 

  102. Buryakov, I.A., Pis’ma Zh. Tekh. Fiz., 2007, vol. 33, no. 20, p. 21 [Tech. Phys. Lett. (Engl. Transl.), vol. 33, no. 10, p. 861].

    Google Scholar 

  103. Buryakov, I.A., Talanta, 2003, vol. 61, p. 369.

    Article  CAS  Google Scholar 

  104. Hill, H.H., Siems, W.F., Louis, R.H., and McMinn, D.G., Anal. Chem., 1990, vol. 62, p. 1201.

    Article  Google Scholar 

  105. Buryakov, I.A., Krylov, E.V., and Soldatov, V.P., Sb. trudov “Khimicheskii analiz ob″ektov okruzhayushchei sredy” (Collection of Papers on Chemical Analysis of Environmental Samples), Malakhov, V.V., Ed., Novosibirsk: Nauka, 1991.

    Google Scholar 

  106. Tang, K., Shvatsburg, A.A., and Smith, R.D., US Patent 7148474, 2006.

  107. Shvatsburg, A.A., Tang, K., and Smith, R.D., US Patent 7170053, 2007.

  108. Cameron, D.B., Wheeler, D.B., Shi, Q., Miller, R.A., Nazarov, E.G., Krylov, E., Coy, S., and Eiceman, G.A., US Patent 7381944, 2008.

  109. Limero, T., Martin, M., and Reese, E., Int. J. Ion Mobility Spectrom., 2003, vol. 6, p. 5.

    CAS  Google Scholar 

  110. Spangler, G.E., Anal. Chem., 1993, vol. 65, p. 3010.

    Article  CAS  Google Scholar 

  111. Eiceman, G.A., Nazarov, E.G., and Stone, J.A., Anal. Chim. Acta, 2003, vol. 493, p. 185.

    Article  CAS  Google Scholar 

  112. Wu, C., Steiner, W.E., Tornatore, P.S., Matz, L.M., Siems, W.F., Atkinson, D.A., and Hill, H.H., Talanta, 2002, vol. 57, p. 123.

    CAS  Google Scholar 

  113. Buryakov, I.A., Int. J. Ion Mobility Spectrom., 2001, vol. 4, p. 112.

    Google Scholar 

  114. GOST (State Standard) R 52361-2005: Analytical Control: Terms and Definitions, 2005.

  115. Karpas, Z., Lorber, A., Tilman, B., and Gdalevsky, R., Int. J. Ion Mobility Spectrom., 2001, vol. 4, p. 5.

    Google Scholar 

  116. Tabrizchi, M. and Abedi, A., Int. J. Mass Spectrom. Ion Processes, 2002, vol. 218, p. 75.

    CAS  Google Scholar 

  117. Munro, W.A., Thomas, C.L.P., and Langford, M.L., Anal. Chim. Acta, 1998, vol. 375, p. 49.

    Article  CAS  Google Scholar 

  118. Daum, K.A., Atkinson, D.A., Ewing, R.G., Knighton, W.B., and Grimsrud, E.P., Talanta, 2001, vol. 54, p. 299.

    Article  CAS  Google Scholar 

  119. Lozovoy, V.V., Xin, Zhu., Gunaratne, T.C., Harris, D.A., Shane, J.C., and Dantus, M., J. Phys. Chem. A, 2008, vol. 112, p. 3789.

    Article  CAS  Google Scholar 

  120. Zakharov, A.Yu., Kapustin, V.I., Petrov, V.S., and Bykov, D.V., Trudy VIII Mezhvuz. nauch. shkoly “Kontsentrirovannye potoki energii v kosmicheskoi tekhnike, elektronike, ekologii i meditsine” (Proc. VIII Int. Sci. School “Concentrated Flows of Energy in Space Technology, Electronics, Ecology and Medicine”), Moscow, 2007.

  121. Wu Ching, Hill, H.H., Rasulev, U.Kh., and Nazarov, E.G., Anal. Chem., 1999, vol. 71, p. 273.

    Article  CAS  Google Scholar 

  122. Eiceman, G.A., Krylov, E.V., Krylova, N.S., Nazarov, E.G., and Miller, R.A., Anal. Chem., 2004, vol. 76, p. 4937.

    Article  CAS  Google Scholar 

  123. Tarver, E.E., Sensors, 2004, vol. 4, p. 1.

    Article  CAS  Google Scholar 

  124. Opisanie perenosnogo detektora parov vzryvchatykh veshchestv MO-2M (RF) (Portable Explosive Vapor Detector MO-2M (Russian Federation).

  125. Fetterolf, D.D. and Clark, T.D., Proc. 1st Int. Simp. on Explosive Detection Technology, Atlantic City, NJ, 1991, p. 689.

  126. Bosco, C.D., UTCA Report 03306, University of Alabama, 2003.

  127. Densona, S., Dentona, B., Sperlinea, R., Rodacy, P.J., and Greshamb, C., Int. J. Ion Mobility Spectrom., 2002, vol. 5, p. 100.

    Google Scholar 

  128. Simpson, G., Klasmeier, M., Hill, H., Atkinson, D., Radolovich, G., Lopez-Avila, V., and Jones, T.L., J. High Res. Chromotogr., 1996, vol. 19, p. 301.

    Article  CAS  Google Scholar 

  129. Spangler, G.E., Carrico, J.P., and Campbell, D.N., J. Test. Eval., 1985, vol. 13, p. 234.

    Article  CAS  Google Scholar 

  130. Ewing, R.G. and Miller, C.J., Field Anal.Chem. Technol., 2001, vol. 5, p. 215.

    Article  CAS  Google Scholar 

  131. Rutherford, E., Philos. Mag., 1897, vol. 44, p. 422.

    CAS  Google Scholar 

  132. Chattock, A.P., Philos. Mag., 1899, vol. 48, p. 401.

    CAS  Google Scholar 

  133. Karasek, F.W., Cohen, M.J., and Carroll, D.I., J. Chromatogr. Sci., 1971, vol. 9, p. 390.

    CAS  Google Scholar 

  134. Linenberg, A., Int. Secur. Rev., 1983, vol. 25, p. 30.

    Google Scholar 

  135. Technical Support Working Group, The International Institute for Homeland Security, Defence and Restoration/2006 NATO Counter-IED Advanced Research Demonstration/Conference Report N41756-06-06-D-5584-SP-SI-2615.

  136. Daum, K.A. and Fox, S.L., Idaho National Laboratory. Report INL/EXT-08-14265, 2008.

  137. Fetterolf, D.D. and Clark, T.D., J. Forensic Sci., 1993, vol. 38, p. 28.

    CAS  Google Scholar 

  138. Oxley, J.C., Smith, J.L., Kirschenbaum, L.J., Marimganti, S., and Vadlamannati, S., J. Forensic Sci., 2008, vol. 53, no. 3, p. 690.

    Article  CAS  Google Scholar 

  139. Huanwen Chen, Bin Hu, Yan Hu, Yanfu Huan, Zhiquan Zhou, and Xiaolin Qiao, J. Am. Soc. Mass Spectrom., 2009, vol. 20, p. 719.

    Article  CAS  Google Scholar 

  140. Koyuncu, H., Seven, E., and Calimli, A., Turk. J. Chem., 2005, vol. 29, p. 255.

    CAS  Google Scholar 

  141. Bolt, H.M., Degen, G.H., Dorn, S.B., Plöttner, S., and Harth, V., Rev. Environ. Health, 2006, vol. 21, no. 4, p. 217.

    Article  CAS  Google Scholar 

  142. Podlipna, R., Fialova, Z., and Vanek, T., Plant Cell Tiss. Organ. Cult., 2008, vol. 94, p. 305.

    Article  Google Scholar 

  143. Dacre, J.C., Drug Metab. Rev., 1994, vol. 26, no. 4, p. 649.

    Article  CAS  Google Scholar 

  144. Buxton, T.L. and Harrington, P. de B., Appl. Spectrosc., 2003, vol. 57, p. 223.

    Article  CAS  Google Scholar 

  145. Rodacy, P., Reber, S., Walker, P., and Andre, J.V., Int. J. Ion Mobility Spectrom., 2002, vol. 5, no. 3, p. 59.

    CAS  Google Scholar 

  146. Rodacy, P.J, Walker, P., Reber, S.D, Phelan, J., and Andre, J.V., Explosive detection in the marine environment and on land using ion mobility spectroscopy, in Rodacy P.J., Reber, S.D., Simonson, R.J., and Hance, B.G., Sandia National Laboratories. Report SAND2000-0581, 2000.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.A. Buryakov, 2011, published in Zhurnal Analiticheskoi Khimii, 2011, Vol. 66, No. 8, pp. 788–809.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buryakov, I.A. Detection of explosives by ion mobility spectrometry. J Anal Chem 66, 674–694 (2011). https://doi.org/10.1134/S1061934811080077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934811080077

Keywords

Navigation