Skip to main content
Log in

Effective Surface Free Energy of Crystalline Phase Nuclei

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Molecular-dynamics simulation by the mean lifetime, forward flux sampling, and seeding method has been employed to study the kinetics of the spontaneous crystallization of a supercooled Lennard-Jones liquid. The limiting values of supercooling (supercompression) of a liquid phase have been determined within wide ranges of temperature and pressure, with nucleation rate being varied by 195 orders of magnitude. The dependence of the effective surface free energy of crystalline phase nuclei on the dividing surface curvature has been calculated from the obtained data with the use of the classical nucleation theory. The calculations have been performed for three isotherms and four isobars. The first (Tolman length) and second corrections to the effective surface free energy for the interface curvature have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Volmer, M. and Weber, A., Z. Phys. Chem. (Munich), 1926, vol. A119, no. 1, p. 277.

    Google Scholar 

  2. Zeldovich, Ya.B., Zh. Eksp. Teor. Fiz., 1942, vol. 12, p. 525.

    CAS  Google Scholar 

  3. Turnbull, D. and Fisher, J.C., J. Chem. Phys., 1949, vol. 17, p. 71.

    Article  CAS  Google Scholar 

  4. Skripov, V.P. and Koverda, V.P., Spontannaya kristallizatsiya pereokhlazhdennykh zhidkostei (Spontaneous Crystallization of Supercooled Liquids), Moscow: Nauka, 1984.

  5. Tolman, R., J. Chem. Phys., 1948, vol. 16, p. 758.

    Article  CAS  Google Scholar 

  6. Fisher, M.P.A. and Wortis, M., Phys. Rev. B: Condens. essential, 1984, vol. 29, p. 6252.

    Article  CAS  Google Scholar 

  7. Block, B.J., Das, S.K., Oettel, M., Virnau, P., and Binder, K., J. Chem. Phys., 2010, vol. 133, 154 702.

    Article  Google Scholar 

  8. Baidakov, V.G. and Skripov, V.P., Zh. Fiz. Khim., 1982, vol. 56, p. 818.

    CAS  Google Scholar 

  9. Baidakov, V.G. and Boltachev, G.Sh., J. Chem. Phys., 2004, vol. 121, p. 8594.

    Article  CAS  Google Scholar 

  10. Rusanov, A.I., Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibria and Surface Phenomena), Leningrad: Khimiya, 1967.

  11. Irving, J.H. and Kirkwood, J.G., J. Chem. Phys., 1950, vol. 18, p. 817.

    Article  CAS  Google Scholar 

  12. Blokhuis, E.M. and Bedeaux, D., J. Chem. Phys., 1992, vol. 97, p. 3576.

    Article  CAS  Google Scholar 

  13. Cheng, B. and Ceriotti, M., J. Chem. Phys., 2018, vol. 148, 231 102.

    Article  Google Scholar 

  14. Schmelzer, J.W.P., Abyzov, A.S., Ferreira, E.B., and Fokin, V.M., Int. J. Appl. Glass Sci., 2019, vol. 10, no. 1, p. 57.

    Article  CAS  Google Scholar 

  15. Landau, L.D., O ravnovesnoi forme kristallov. Sobranie trudov (On Equilibrium Form of Crystals. Collected Works), Moscow: Nauka, 1969, vol. 2.

  16. Herring, C., Phys. Rev., 1951, vol. 82, p. 87.

    Article  CAS  Google Scholar 

  17. Statt, A., Virnau, P., and Binder, K., Phys. Rev. E: Stat. Phys., Plasmas, Liquids, Relat.Interdiscip. Top., 2014, vol. 96, 042 609.

    Google Scholar 

  18. Gibbs, J.W., The Collected Works, New York: Longmans & Green, 1928.

    Google Scholar 

  19. Baidakov, V.G. and Boltachev, G.Sh., Zh. Fiz. Khim., 1995, vol. 69, p. 515.

    CAS  Google Scholar 

  20. Baidakov, V.G. and Boltachev, G.Sh., Phys. Rev. E: Stat. Phys., Plasmas, Liquids, Relat.Interdiscip. Top., 1999, vol. 59, p. 469.

    CAS  Google Scholar 

  21. Baidakov, V.G., Boltachev, G.Sh., and Chernykh, G.G., Phys. Rev. E: Stat. Phys., Plasmas, Liquids, Relat.Interdiscip. Top., 2004, vol. 70, 011 603.

    Google Scholar 

  22. Skripov, V.P., Metastabil’naya zhidkost’ (Metastable Liquid), Moscow: Nauka, 1972.

  23. Bolhuis, P.G., Chandler, D., Dellago, C., and Geissker, P.L., Annu. Rev. Phys. Chem., 2002, vol. 53, p. 291.

    Article  CAS  Google Scholar 

  24. Van Erp, T.S., Moroni, D., and Bolhuis, P.G., J. Chem. Phys., 2003, vol. 118, p. 7762.

    Article  CAS  Google Scholar 

  25. Allen, R.J., Valeriani, C., and Ten Wolde, P.R., J. Phys.: Condens. essential, 2009, vol. 21, 463 102.

    Google Scholar 

  26. Espinosa, J.R., Vega, C., Valeriani, C., and Sanz, E., J. Chem. Phys., 2015, vol. 142, 194 709.

    Article  Google Scholar 

  27. Espinosa, J.R., Vega, C., Valeriani, C., and Sanz, E., J. Chem. Phys., 2016, vol. 144, 034 501.

    Article  Google Scholar 

  28. Ten Wolde, P.R., Ruiz-Montero, M.J., and Frenkel, D., J. Chem. Phys., 1996, vol. 104, p. 9932.

    Article  CAS  Google Scholar 

  29. Lechner, W. and Dellago, C., J. Chem. Phys., 2008, vol. 129, 114 707.

    Article  Google Scholar 

  30. Plimpton, S., J. Comput. Phys., 1995, vol. 117, p. 1.

    Article  CAS  Google Scholar 

  31. Bussi, G., Donadio, D., and Parrinello, M., J. Chem. Phys., 2007, vol. 126, 014 101.

    Article  Google Scholar 

  32. Verlet, L., Phys. Rev., 1967, vol. 159, p. 98.

    Article  CAS  Google Scholar 

  33. Sidky, H., Colón, Y.J., Helfferich, J., et al., J. Chem. Phys., 2018, vol. 148, 044 104.

    Article  Google Scholar 

  34. Baidakov, V.G., Protsenko, S.P., and Tipeev, A.O., J. Chem. Phys., 2013, vol. 139, p. 224 703.

    Article  Google Scholar 

  35. Baidakov, V.G. and Protsenko, S.P., Dokl. Akad. Nauk, 2004, vol. 394, p. 752.

    Google Scholar 

  36. Baidakov, V.G. and Tipeev, A.O., J. Chem. Phys., 2012, vol. 136, 074 510.

    Article  Google Scholar 

  37. Baidakov, V.G. and Protsenko, S.P., JETP, 2006, vol. 103, p. 876.

    Article  CAS  Google Scholar 

  38. Boltachev, G.Sh. and Baidakov, V.G., High Temp., 2003, vol. 41, p. 270.

    Article  CAS  Google Scholar 

  39. Baidakov, V.G. and Protsenko, S.P., Phys. Rev. Lett., 2005, vol. 95, 015 701.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-19-00276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Baidakov.

Ethics declarations

The authors declare that they have no conflict of inter-est.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidakov, V.G., Protsenko, K.R. Effective Surface Free Energy of Crystalline Phase Nuclei. Colloid J 81, 634–641 (2019). https://doi.org/10.1134/S1061933X19060036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X19060036

Navigation