Skip to main content
Log in

Semi-Classical Limit and Least Action Principle Revisited with (min,+) Path Integral and Action-Particle Duality

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

One shows that the Feynman’s Path Integral designed for quantum mechanics has an analogous in classical mechanics, the so-called (min, +) Path Integral. This former is build on (min, +)-algebra and (min, +)-analysis which permit to handle in a linear way non-linear problems occurring in mathematical physics. The Hamilton-Jacobi equations and their solutions within this mathematical framework, are introduced and yield to a new interpretation expressed in a duality between action field and particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. A. Carré, “An Algebra for Network Routing Problems,” J. Inst. Math. Appl. 19, pp. 381 (1971).

    MathSciNet  MATH  Google Scholar 

  2. R. Bellman, Dynamic Programming (Princeton University, Princeton, 1957).

    MATH  Google Scholar 

  3. M. Kalinski, J. H. Eberly, and I. Bialynicki-Birula, “Lagrange Equilibrium Points in Celestial Mechanics and Nonspreading Wave Packets for Strongly Driven Rydberg Electrons,” Phys. Rev. Lett. 73, pp. 1777 (1994).

    Article  ADS  Google Scholar 

  4. D. Bohm, “A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables,” Phys. Rev. 85, 166–193 (1952).

    ADS  MathSciNet  MATH  Google Scholar 

  5. D. Delande and A. Buchleitner, “Non-Dispersive Electronic Wave Packets in Multiphoton Processus,” Phys. Rev. Lett. 75, pp. 1487 (1995).

    Article  ADS  Google Scholar 

  6. D. Delande, J. Zakrzewski, and A. Buchleitner, “Non-Dispersive Wave Packets in Periodically Driven Quantum Systems,” Phys. Rep. 368, 409–547 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  7. C. Benzaken, Structure algébrique des cheminements: pseudotreillis, gerbier de carré nul in: Biorcu G. 5 Ed. Networks and swatching theory, Academic Press, 1968.

  8. A. P. Demichev and M. Chaichian, Path Integrals in Physics, Vol. 1 : Stochastic Process and Quantum Mechanics (Taylor, Francis, 2001).

    MATH  Google Scholar 

  9. P. Hervé and R. Cruon, Quelques résultats relatifs à une structure algébrique et son application au problème central de l’ordonnancement (1965).

  10. L. de Broglie, “La mécanique ondulatoire et la structure atomique de la matière et du rayonnement,” Journal de Physique 8, 225–241 (1927).

    Article  Google Scholar 

  11. L. Euler, Methodus Inveniendi Lineas Curvas Maximi Minive Proprietate Gaudentes (Bousquet, Lausanne et Geneva, 1744).

    MATH  Google Scholar 

  12. R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965).

  13. R. Feynman and A. Hibbs, “Quantum Mechanics and Path Integrals,” McGraw-Hill, 41–64 (1965).

  14. R. Feynman and A. Hibbs, “Quantum Mechanics and Path Integrals,” McGraw-Hill, 58–60 (1965).

  15. R. P. Feynman, “Space-Time Approach to Non-Relativistic Quantum Mechanics,” Rev. Modern Phys. 20(2), 367–387 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  16. G. L. Litvinov, “The Maslov Dequantization, Idempotent and Tropical Mathematics: A Brief Introduction,” J. Math. Sci. 140(3), 426–444 (2007).

    Article  MathSciNet  Google Scholar 

  17. R. J. Glauber, Quantum Optics and Electronics, Les Houches Lectures 1964, C. de Witt, A. Blandin and C. Cohen-Tanoudji (Gordon and Breach, New York, 1965).

    Google Scholar 

  18. M. Gondran, “Analyse Minplus,” C. R. Acad. Sci. Paris 323, 371–375 (1996).

    MathSciNet  MATH  Google Scholar 

  19. M. Gondran, “Convergences de fonctions à valeurs dans ℝk et analyse minplus complexe,” C. R. Acad. Sci. Paris 329, 783–788 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Gondran and M. Gondran, “Discerned and Non-Discerned Particles in Classical Mechanics and Convergence of Quantum Mechanics to Classical Mechanics,” Annal. Fond. Louis de Broglie 39, 117–135 (2011).

    MATH  Google Scholar 

  21. A. Gondran and M. Gondran, “The Two Limits of the Schrödinger Equation in the Semi-Classical Approximation: Discerned and Non-Discerned Particles in Classical Mechanics,” Foundations of Probability and Physics-6, AIP Conf. Proc. 1424, 111–115 (2012), 1424, 111–115 (2012).

    ADS  MATH  Google Scholar 

  22. I. Tomescu, Sur les méethodes matricielles dans la théeorie des réeseaux (1966).

  23. J. Kutzman, Théeorie des reéseaux graphes (Dunod, Paris, 1972).

    Google Scholar 

  24. J. L. Lagrange, Méecanique Analytique (Gauthier-Villars, Paris, translated by V. Vagliente and A. Boissonade (Klumer Academic, Dordrecht, 2001)), 2nd edition, 1888.

  25. M. Gondran, Problèemes combinatoires et programmation en nombres entiers. Theèse de Doctorat d’Etat (University of Paris VI, 1974).

  26. M. Gondran, “L’algorithme glouton dans les algèbres de chemin,” Bull. Etudes et de la Recherche, EDF, Séerie C 1, 25–32 (1975).

    Google Scholar 

  27. M. Gondran, “Path Algebra and Algorithms,” B. Roy (Ed.), Combinatorial Programming: Methods and Applications, Reidel, Dordrecht, 137–148 (1975).

    Chapter  Google Scholar 

  28. M. Gondran, “Valeurs propres et vecteurs propres en classification hiérarchique,” RAIRO-Theoretical Informatics and Applications 10(1), 39–46 (1976).

    MathSciNet  Google Scholar 

  29. M. Gondran, “Les éléments p-réguliers dans les dioïdes,” Discrete Math. 25, 33–39 (1979).

    Article  MathSciNet  Google Scholar 

  30. M. Gondran, “Valeurs propres et vecteurs propres en analyse des préeféerences,” Note EDF, pages HI–3199 (1979).

  31. A. Gondran, M. Gondran, and A. Kenoufi, “Complex Variational Calculus with Mean of (Min, +)-Analysis,” Trends Appl. Comput. Math. 18(3), 1–19 (2017).

    Google Scholar 

  32. A. Kenoufi and M. Gondran, “Numerical Calculations of Hölder Exponents for the Weierstrass Functions with (Min,+)-Wavelets,” Trends Appl. Comput. Math. 15 (3), 261–273.

  33. M. Minoux and M. Gondran, Graphs and Algorithms (Wiley-Interscience, 1984).

  34. M. Minoux and M. Gondran, Graphs, Dioids and Semirings (Springer, 2008).

  35. T. Lehner, M. Gondran, and A. Kenoufi, “Multi-Fractal Analysis for Riemann Serie and Mandelbrot Binomial Measure with (min, +)-Wavelets,” Trends Appl. Comput. Math. 17(2), 247–263 (2016).

    Google Scholar 

  36. E. Madelung, “Quantentheorie in Hydrodynamischer Form,” Zeit. Phys. 40, 322–6 (1926).

    Article  ADS  Google Scholar 

  37. T. F. Gallagher and H. Maeda, “Non Dispersing Wave Packets,” Phys. Rev. Lett. 92, 133004–1 (2004).

    Article  ADS  Google Scholar 

  38. V. Maslov, Operational calculus (Mir, Moscow, 1987).

    Google Scholar 

  39. P. Del Moral, A survey of Maslov optimization theory (V. N. Kolokoltsov and V. P. Maslov, Idempotent Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 1997).

  40. J. Ferland and P. Robert, Généralisation de l’algorithme de warshall (1968).

  41. E. Schrödinger, “Der stetige Bergang von der mikro-zur Makromechanik,” Naturwissenschaften 14, 664–666 (1926).

    Article  ADS  Google Scholar 

  42. L. S. Schulmann, Techniques and Applications of Path Integration (John Wiley & Sons, New York, 1981).

    Book  Google Scholar 

  43. V. Peteanu, An Algebra of the Optimal Path in Networks (1967).

  44. S. N. Samborski and V. P. Maslov, Idempotent Analysis (Advances in Soviet Mathematics, Amer. Math. Soc., 13, 1992).

  45. J. H. Van Vleck, “The Correspondence Principle in the Statistical Interpretation of Quantum Mechanics,” Proc. Natl. Acad. Sc. USA 14(2), 178–188 (1928).

    Article  ADS  Google Scholar 

  46. V. N. Kolokoltsov and V. P. Maslov, Idempotent Analysis and Its Applications in Optimal Control (Nauka, 1994).

Download references

Acknowledgements

We thank Professors Lyazid Chetouani, Janos Polonyi, and René Voltz for interesting and useful discussions about path integrals and least-action principles.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Kenoufi, M. Gondran or A. Gondran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenoufi, A., Gondran, M. & Gondran, A. Semi-Classical Limit and Least Action Principle Revisited with (min,+) Path Integral and Action-Particle Duality. Russ. J. Math. Phys. 27, 61–75 (2020). https://doi.org/10.1134/S1061920820010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920820010069

Navigation