Skip to main content
Log in

Asymptotics of localized solutions of the one-dimensional wave equation with variable velocity. II. Taking into account a source on the right-hand side and a weak dispersion

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In the present (second) part of the paper, we study the asymptotic behavior of the solution of the Cauchy problem for a nonhomogeneous wave equation and also consider (instead of the wave equation) an equation with added fourth derivatives containing a small parameter, i.e., include the effects of weak dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Voit, “Tsunami Waves,” in Physics of Ocean, Vol. 2 (Nauka, Moscow, 1978), pp. 229–254.

    Google Scholar 

  2. E. N. Pelinovski, Hydrodynamics of Tsunami Waves (Inst. of Appl. Phys. RAS, Nizhnii Novgorod, 1996) [in Russian].

    Google Scholar 

  3. Yu. I. Shokin, L. B. Chubarov, A. G. Marchuk, and K.V. Simonov, Numerical Experiment in Tsunami Problem (Nauka, Siberian Division, Novosibirsk, 1989) [in Russian].

    MATH  Google Scholar 

  4. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).

    MATH  Google Scholar 

  5. V. P. Maslov, Perturbation Theory and Asymptotic Methods (MSU, Moscow, 1965) [in Russian]; Théorie des perturbations et méthodes asymptotiques (Dunod, Gauthier-Villars, Paris, 1972).

    Google Scholar 

  6. V. P. Maslov, Operational Methods (Nauka, Moscow, 1973; Mir, Moscow, 1976).

    Google Scholar 

  7. V. P. Maslov and M.V. Fedoryuk, Quasiclassical Approximation for the Equations of Quantum Mechanics (Nauka, Moscow, 1976); V.P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics, Mathematical Physics and Applied Mathematics 7, Contemp. Math. 5 (D. Reidel, Dordrecht, 1981).

    MATH  Google Scholar 

  8. V. P. Maslov, The Complex WKB Method for Nonlinear Equations (Nauka, Moscow, 1977) [in Russian]; English transl.: The Complex WKB Method for Nonlinear Equations. I. Linear Theory (Birkhäuser, Basel, 1994).

    Google Scholar 

  9. L. M. Brekhovskikh, Waves in Layered Media (Nauka, Moscow, 1973; Academic Press, Harcourt Brace Jovanovich, New York-London, 1980); L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media II, Point Source and Bounded Beam (Springer, 1992).

    Google Scholar 

  10. V. M. Babich and V. S. Buldyrev, Short-Wavelength Diffraction Theory (Springer, 1991).

  11. V. M. Babich, V. S. Buldyrev, and I.A. Molotkov, Space-Time Ray Method, Linear and Nonlinear Waves (Leningrad University Press, Leningrad, 1985) [in Russian].

    Google Scholar 

  12. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer, 1990).

  13. S.Yu. Dobrokhotov and P.N. Zhevandrov, “Asymptotic Expansions and the Maslov Canonical Operator in the Linear Theory of Water Waves. I. Main Constructions and Equations for Surface Gravity Waves,” Russ. J. Math. Phys. 10(1), 1–31 (2003).

    MATH  MathSciNet  Google Scholar 

  14. F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vols. 1–2 (Plenum, New York, 1980).

    MATH  Google Scholar 

  15. S.Yu. Dobrokhotov, V. P. Maslov, P. N. Zhevandrov, and A. I. Shafarevich, “Asymptotic Fast-Decreasing Solution of Linear, Strictly Hyperbolic Systems with Variable Coefficients,” Math. Notes 49(4), 355–365 (1991).

    MATH  MathSciNet  Google Scholar 

  16. S. Dobrokhotov, S. Sekerzh-Zenkovich, B. Tirozzi, and T. Tudorovski, “Description of Tsunami Propagation Based on the Maslov Canonical Operator,” Dokl. Math. 74(1), 592–596 (2006).

    Article  MATH  Google Scholar 

  17. S. Dobrokhotov, S. Sekerzh-Zenkovich, B. Tirozzi, and T. Tudorovski, “Asymptotic Theory of Tsunami Waves: Geometrical Aspects and the Generalized Maslov Representation,” in Workshop on Renormalization Group, 2006, Reports of Kyoto Research Mathematical Institute (Kyoto Research Mathematical Institute, 2006), pp. 118–152.

  18. S. Dobrokhotov, S. Sekerzh-Zenkovich, B. Tirozzi, and B. Volkov, “Explicit Asymptotics for Tsunami Waves in Framework of the Piston Model,” Russ. J. Earth Sciences 8(ES403), 1–12 (2006).

    Article  Google Scholar 

  19. A. P. Kiselev, “Generation of Modulated Vibrations in Nonhomogeneous Media,” in Mathematical Questions of Wave Propagation Theory 11, Zap. Nauchn. Sem. LOMI 104, 111–122.

  20. M. I. Vishik and L.A. Lusternik, “Regular Degeneration and Boundary Layer for Linear Differential Equations with Small Parameter,” Uspekhi Mat. Nauk 12(5), 3–122 (1957) [Amer. Math. Soc. Transl. (2) 20, 239–364 (1962)].

    MATH  Google Scholar 

  21. A. N. Nayfeh, Perturbation Methods (Wiley, New York, 1973).

    MATH  Google Scholar 

  22. V. P. Maslov and G.A. Omel’janov, Geometric Asymptotics for Nonlinear PDE. I, Amer. Math. Soc. 232 (Providence, 2000).

  23. J. L. Singe, “The Hamilton Method and Its Application to Water Waves,” Proc. Roy. Irish Acad. A63, 1–34 (2006).

    Google Scholar 

  24. S.Yu. Dobrokhotov, S.O. Sinitsyn, and B. Tirozzi, “Asymptotics of Localized Solutions of the One-Dimensional Wave Equation with Variable Velocity. I. The Cauchy Problem,” Russ. J. Math. Phys. 14(1), 28–56 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  25. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1972; Dover, New York, 1990).

    Google Scholar 

  26. M. V. Berry, “Focused Tsunami Waves,” Proc. Roy. Soc. A 463, 3055–3071 (2007).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. S. Dobrokhotov, A. Shafarevich, and B. Tirozzi, “Localized Wave and Vortical Solutions to Linear Hyperbolic Systems and Their Application to the Linear Shallow Water Equations,” Russ. J. Math. Phys. 15(2), 192–221 (2008).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bianchi.

Additional information

The research was supported by RFBR grant no. 08-01-00726 and by the scientific agreement between the Department of Physics of the University of Rome “La Sapienza“ and the A. Ishlinski Institute for Problems in Mechanics of Russian Academy of Sciences, Moscow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, D., Dobrokhotov, S.Y. & Tirozzi, B. Asymptotics of localized solutions of the one-dimensional wave equation with variable velocity. II. Taking into account a source on the right-hand side and a weak dispersion. Russ. J. Math. Phys. 15, 427–446 (2008). https://doi.org/10.1134/S1061920808040018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920808040018

Keywords

Navigation