Skip to main content
Log in

Quantification of molecular diffusion in arterial tissues with optical coherence tomography and fluorescence microscopy

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

Alternations in vascular permeability for different molecules, drugs, and contrast agents might be a significant early marker of development of various diseases such as atherosclerosis. However, up to date experimental studies of molecular diffusion across vascular wall have been limited. Recently, we demonstrated that the Optical Coherence Tomography (OCT) technique could be applied for noninvasive and nondestructive quantification of molecular diffusion in different biological tissues. However, the viability of the OCT-based assessment of molecular diffusion should be validated with established methods. This study focused on comparing molecular diffusion rates in vascular tissues measured with OCT and standard fluorescent microscopy. Noninvasive quantification of tetramethylrhodamine (fluorescent dye) permeability in porcine vascular tissues was performed using a fiber-based OCT system. Concurrently, standard histological examination of dye diffusion was performed and quantified with fluorescent microscopy. The permeability of tetramethylrhodamine was found to be (2.08 ± 0.31) × 10−5 cm/s with the fluorescent technique (n = 8), and (2.45 ± 0.46) × 10−5 cm/s with the OCT (n = 3). Good correlation between permeability rates measured by OCT and histology was demonstrated, suggesting that the OCT-based method could be used for accurate, nondestructive assessment of molecular diffusion in multilayered tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Colucci and E. Braunwald, Pathophysiology of Heart Failure (Elsevier, Philadelphia, PA, 2005).

    Google Scholar 

  2. A. N. Fernando, L. P. Fernando, Y. Fukuda, and A. P. Kaplan, Am. J. Physiol. Heart Circ Physiol. 289, H251 (2005).

    Article  Google Scholar 

  3. J. F. Toussaint, J. F. Southern, V. Fuster, and H. L. Kantor, Arterioscler Thromb Vase Biol. 17, 542 (1997).

    Google Scholar 

  4. Y. Okamoto, K. Mizuno, K. Arakawa, A. Kurita, H. Nakamura, K. Takeuchi, and M. Yoshioka, Am. J. Card Imaging 9, 57 (1995).

    Google Scholar 

  5. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, J. Biomed. Opt. 12, 051403 (2007).

    Google Scholar 

  6. P. H. Tomlins and R. K. Wang, J. Phys. D: Appl. Phys. 38, 2519 (2005).

    Article  ADS  Google Scholar 

  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).

    Article  ADS  Google Scholar 

  8. V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE, Bellingham, WA, 2005).

    Google Scholar 

  9. S. G. Proskurin and I. V. Meglinski, Laser Phys. Lett. 4, 824 (2007).

    Article  Google Scholar 

  10. M. G. Ghosn, E. F. Carbajal, N. A. Befrui, V. V. Tuchin, and K. V. Larin, J. Biomed. Opt. 13, 021110 (2008).

    Google Scholar 

  11. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, J. Biomed. Opt. 2, 401 (1997).

    Article  ADS  Google Scholar 

  12. I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, and K. V. Larin, Laser Phys. Lett. 5, 476 (2008).

    Article  Google Scholar 

  13. A. Lemelle, B. Veksler, I. S. Kozhevnikov, G. G. Akchurin, S. A. Piletsky, and I. Meglinski, Laser Phys. Lett. 6, 71 (2009).

    Article  Google Scholar 

  14. M. Ghosn, V. V. Tuchin, and K. V. Larin, Opt. Lett. 31, 2314 (2006).

    Article  ADS  Google Scholar 

  15. K. V. Larin and M. Ghosn, Quantum Electron. 36, 1083 (2006).

    Article  Google Scholar 

  16. M. Ghosn, V. V. Tuchin, and K. V. Larin, Invest. Ophthalmol. Vis. Sci. 48, 2726 (2007).

    Article  Google Scholar 

  17. K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, Laser Phys. Lett. 4, 312 (2007).

    Article  Google Scholar 

  18. M. G. Ghosn, E. F. Carbajal, N. Befrui, A. Tellez, J. F. Granada, and K. V. Larin, J. Biomed. Opt. 13, 010505 (2008).

    Google Scholar 

  19. K. V. Larin and V. V. Tuchin, Quantum Electron. 38, 551 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Larin.

Additional information

Original Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosn, M.G., Syed, S.H., Befrui, N.A. et al. Quantification of molecular diffusion in arterial tissues with optical coherence tomography and fluorescence microscopy. Laser Phys. 19, 1272–1275 (2009). https://doi.org/10.1134/S1054660X09060152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09060152

PACS numbers

Navigation