Skip to main content
Log in

Dressed states analysis of lasing without population inversion in a three-level ladder scheme: Approximate analytic time dependent solutions

  • Physics of Lasers
  • Published:
Laser Physics

Abstract

A dressed-state study of lasing without population inversion from a three level atom interacting with a bi-chromatic laser field, in the ladder configuration, is formulated. We allow the atomic system to be dressed by both laser filed photons (double dressing). The evolution of the system under consideration is being explored both analytically and numerically, within the transient regime. Time dependent approximate analytic solutions for dressed-state populations and coherences are derived, within the so called “secular approximation,” under resonant conditions. We also present time dependent numerical solutions for population and coherences in the off-resonance regime. A spectral analysis is also performed revealing the structure of various dressed states transitions. These are shown to be composed of quintets centered about the frequencies of the coupling and probe laser fields and having sidebands located symmetrically at positions shifted from line center at the Rabi and double Rabi frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Braunstein and R. Shuker, “X-ray Laser without Inversion in a Three Ladder System,” Phys. Rev. A 68, 013812-1-03812-14 (2003).

    Google Scholar 

  2. M. O. Scully, “From Lasers and Masers to Phaseonium and Phasers,” Phys. Rep. 219, 91–201 (1992).

    Article  Google Scholar 

  3. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without Inversion in Semiconductor Nanostrucures,” Nature Mater. 5, 175–178 (2006).

    Article  ADS  Google Scholar 

  4. M. O. Scully, Zhu Shi-Yao, and A. Gavrielides, “Degenerate Quantum-Beat Laser: Lasing without Inversion and Inversion without Lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).

    Article  ADS  Google Scholar 

  5. Y. Zhu, “Lasing without Inversion in a Closed Three-Level System,” Phys. Rev. A 45, R6149–R6152 (1992).

    Article  ADS  Google Scholar 

  6. G. Grynberg, M. Pinard, and P. Mandel, “Amplification without Population Inversion in a V Three-Level System: A Physical Interpretation,” Phys. Rev. A 54, 776–785 (1996).

    Article  ADS  Google Scholar 

  7. Zhu Shi-Yao, Wang De Zhong, and Yue Gau Jin, “Nonlinear Theory of Noninversion Lasers of an Open Three-Level System,” Phys. Rev. A 55, 1399–1346 (1997).

    Google Scholar 

  8. O. Kocharovskaya, P. Mandel, and Y. V. Radeonychev, “Inversionless Amplification in a Three-Level Medium,” Phys. Rev. A 45, 1997–2005 (1992).

    Article  ADS  Google Scholar 

  9. O. Kocharovskaya, “Amplification without Inversion,” Phys. Rep. 219, 175–189 (1992).

    Article  ADS  Google Scholar 

  10. J. Mompart, R. Corbalan, and R. Vilaseca, “Lasing without Inversion in the V-type Three-Level System under Two-photon Resonance Condition,” Opt. Commun. 147, 299–304 (1998).

    Article  Google Scholar 

  11. S. Menon and G. S. Agarwal, “Amplification without Inversion: The Double-Lambda Scheme,” Phys. Rev. A 42, 523–535 (1990).

    Article  Google Scholar 

  12. S. E. Harris, “Lasers without Inversion: Interference of Lifetime-Broadened Resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).

    Article  ADS  Google Scholar 

  13. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ., Cambridge, 1997).

    Google Scholar 

  14. R. Gray, R. M. Whitley, and C. R. Stroud, Jr., “Coherent Trapping of Atomic Populations,” Opt. Lett. 3, 218–220 (1978).

    Article  ADS  Google Scholar 

  15. E. Arimondo, Coherent Population Trapping in Laser Spectroscopy (Elsevier, Amsterdam, 1996).

    Google Scholar 

  16. S. Swain, “Conditions for Population Trapping in a Three-Level System,” J. Phys. B 15, 3405–3412 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  17. B. J. Dalton and P. L. Knight, “Population Trapping and Ultranarrow Raman Lineshapes Induced by Phase Fluctuating Fields,” Opt. Commun. 42, 411–415 (1982).

    Article  ADS  Google Scholar 

  18. E. Cerboneschi and E. Arimondo, “Matched Pulses and Electromagnetically Induced Transparency for the Interaction of Laser Pulse Pairs with a Double-Vee System,” Opt. Commun. 127, 55–61 (1996).

    Article  ADS  Google Scholar 

  19. F. S. Cataliotti et al., “Electromagnetically Induced Transparency in Cold Free Atoms: Test of a Sum Rule for Nonlinear Optics,” Phys. Rev. A 56, 2221–2224 (1997).

    Article  ADS  Google Scholar 

  20. M. O. Scully, “Enhancement of the Index of Refraction via Quantum Coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).

    Article  ADS  Google Scholar 

  21. A. D. Wilson-Gordon and H. Friedmann, “Enhanced Index of Refraction: A Comparison between Two- and Three-level Systems,” Opt. Commun. 94, 238–244 (1992).

    Article  ADS  Google Scholar 

  22. A. D. Wilson-Gordon and H. Friedmann, “Enhanced Index of Refraction in a Population-Trapped Three-Level System,” Opt. Commun. 98, 303–308 (1993).

    Article  ADS  Google Scholar 

  23. A. S. Zibrov et al., “Experimental Demonstration of Enhanced Index of Refraction via Quantum Coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996).

    Article  ADS  Google Scholar 

  24. G. Vemuri, G. S. Agarwal, and B. D. Nageswara, “Analysis of Sub-Doppler Linewidths in Inversionless Amplification,” Phys. Rev. A 54, 3695–3696 (1996).

    Article  ADS  Google Scholar 

  25. Y. Zhu and A. I. Rubiera, “Inversionless Lasing and Photon Statistics in a V-type Atomic System,” Phys. Rev. A 53, 1065–1071 (1996).

    Article  ADS  Google Scholar 

  26. Xiang Ming Hu and Jin-Sheng Peng, “Squeezed Cascade Lasers without Population Inversion,” Opt. Commun. 154, 203–216 (1998).

    Article  Google Scholar 

  27. K. M. Gheri and D. F. Walls, “Sub-Shot-Noise Lasers without Inversion,” Phys. Rev. Lett. 50, 3428–3431 (1992).

    Article  ADS  Google Scholar 

  28. K. M. Gheri and D. F. Walls, “Squeezed Lasing without Inversion or Light Amplification by Coherence,” Phys. Rev. A 45, 6675–6686 (1992).

    Article  ADS  Google Scholar 

  29. G. S. Agarwal, “Inhibition of Spontaneous Emission Noise in Lasers without Inversion,” Phys. Rev. Lett. 67, 980–982 (1991).

    Article  ADS  Google Scholar 

  30. M. O. Scully and Shi-Yao Zhu, “Spectral Line Elimination and Spontaneous Emission Cancellation via Quantum Interference,” Phys. Rev. Lett. 76, 388–391 (1996).

    Article  ADS  Google Scholar 

  31. Y. Zhu and J. Lin, “Sub-doppler Light Amplification in a Coherently Pumped Atomic System,” Phys. Rev. A 53, 1767–1774 (1996).

    Article  ADS  Google Scholar 

  32. A. Imamoglu, J. E. Field, and S. E. Harris, “Lasers without Inversion: A Closed Lifetime Broadened System,” Phys. Rev. Lett. 66, 1154–1156 (1991).

    Article  ADS  Google Scholar 

  33. G. S. Agrawal, “Origin of Gain in Systems without Inversion in Bare or Dressed States,” Phys. Rev. A 44, R28–R30 (1991).

    Article  ADS  Google Scholar 

  34. L. M. Narducci, C. Keitel, H. M. Doss, P. Ru, M. O. Scully, and S. Y. Zhu, “A Simple Model of a Laser without Inversion,” Opt. Commun. 81, 379–384 (1991).

    Article  ADS  Google Scholar 

  35. G. Grynberg and C. C. Tannoudji, “Central Resonance of the Mollow Absorption Spectrum: Physical Origin of Gain without Population Inversion,” Opt. Commun. 96, 150–163 (1993).

    Article  ADS  Google Scholar 

  36. G. A. Wilson, K. K. Meduri, P. B. Sellin, and T. W. Mossberg, “Inversionless Gain in Driven Three-Level V-Type Atoms: A Comparison of Broadband and Monochromatic Excitation,” Phys. Rev. A 50, 3994–3400 (1994).

    Article  ADS  Google Scholar 

  37. G. Vemuri, K. V. Vasavada, and G. S. Agarwal, “Lasing without Inversion in the Absence of a Coherent Coupling Field,” Phys. Rev. A 52, 3228–3230 (1995).

    Article  ADS  Google Scholar 

  38. Yang Zhao, Danhong Huang, and Cunkai Wu, “Lasing without Inversion in Double Quantum Wells Controlled by a dc Field,” J. Opt. Soc. Am. B 7, 1614 (1996).

    Article  ADS  Google Scholar 

  39. N. A. Ansari and A. H. Toor, “Quantum Theory of Non-Degenerate Inversionless Laser: Effects of Initial Partial Coherence,” J. Mod. Opt. 43, 2425–2435 (1996).

    ADS  Google Scholar 

  40. Y. Zhu, “Lasing without Inversion in a V-Type System: Transient and Steady-State Analysis,” Phys. Rev. A 53, 2742–2747 (1996).

    Google Scholar 

  41. G. Vemuri and G. S. Agrawal, “Role of Inhomogeneous Broadening in Lasing without Inversion in Ladder Systems,” Phys. Rev. A 53, 1060–1064 (1996).

    Google Scholar 

  42. J. B. Khurgin and E. Rosencher, “Practical Aspects of Optically Coupled Inversionless Lasers,” J. Opt. Soc. Am. B 14, 1249 (1997).

    Article  ADS  Google Scholar 

  43. J. L. Cohen and P. R. Berman, “Amplification without Inversion: Understanding Probability Amplitudes, Quantum Interference, and Feynman Rules in a Strongly Driven System,” Phys. Rev. A 55, 3900–3917 (1997).

    Article  ADS  Google Scholar 

  44. A. S. Zibrov et al., “Experimental Demonstration of Laser Oscillation without Population Inversion via Quantum Interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).

    Article  ADS  Google Scholar 

  45. G. G. Padmabandu et al., “Laser Oscillation without Population Inversion in a Sodium Atomic Beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).

    Article  ADS  Google Scholar 

  46. J. Kitching and L. Hollberg, “Interference-Induced Optical Gain without Population Inversion in Approximate Time Dependent Dressed States Analysis Cold, Trapped Atoms,” Phys. Rev. A 59, 4685–4689 (1999).

    Article  ADS  Google Scholar 

  47. P. R. Berman and R. Saloma, “Comparison between Dressed-Atom and Bare-Atom Pictures in Laser Spectroscopy,” Phys. Rev. A 25, 2667 (1982).

    Article  ADS  Google Scholar 

  48. D. Braunstein and R. Shuker, “Time-Dependent Dressed-States Analysis of Lasing without Population Inversion in a Three-Level Ladder Scheme,” Laser Phys. 18, 237 (2008).

    ADS  Google Scholar 

  49. C. Cohen-Tanudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, 1992), Ch. 6.

  50. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent Population Transfer Among Quantum States of Atoms and Molecules,” Rev. Mod. Phys. 70, 1003–1026 (1998).

    Article  Google Scholar 

  51. Xiang Ming Hu and Jun Xu, “Enhanced Index and Negative Dispersion without Absorption in Driven Cascade Media,” Phys. Rev. A 69, 043812-1-04812-9 (2004).

  52. D. Braunstein and R. Shuker, “Absorption with Inversion and Amplification without Inversion in a Coherently Prepared v System: A Dressed State Approach,” Phys. Rev. A 64, 053812-1-053812-12 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Braunstein.

Additional information

Original Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braunstein, D., Shuker, R. Dressed states analysis of lasing without population inversion in a three-level ladder scheme: Approximate analytic time dependent solutions. Laser Phys. 19, 290–304 (2009). https://doi.org/10.1134/S1054660X09020236

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09020236

PACS numbers

Navigation