Skip to main content
Log in

An injection-seeded high-repetition rate Ti:Sapphire laser for high-resolution spectroscopy and trace analysis of rare isotopes

  • Laser Spectroscopy
  • Published:
Laser Physics

Abstract

An injection-seeded high-repetition rate (∼10 kHz) Ti:sapphire laser with a spectral bandwidth of ∼20 MHz and an average output power of above 1.5 W has been developed. We report on its demonstration and characteristics with respect to the spectral, temporal, and spatial properties as well as the output energy. In crossed-beam resonance ionization on a well-collimated thermal atomic beam, the ∼200 MHz hyperfine structure of the D2 transition at 308 nm of 27Al has been well resolved. Applications of the system in the field of insource laser spectroscopy for on-line produced short-lived radioactive isotopes as well as for selective-trace isotope determination are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. S. Lethokov, Laser Photoionization Spectroscopy (Academic, Orlando 3, 1987).

    Google Scholar 

  2. G. S. Hurst and M. G. Payne, Principles and Application of Resonance Ionisation Spectroscopy (Adam Hilger, Bristol, 1988).

    Google Scholar 

  3. P. Müller, B. A. Bushaw, K. Blaum, et al., Fresenius J. Anal. Chem. 370, 508 (2001).

    Article  Google Scholar 

  4. V. I. Mishin, V. Fedoseyev, H. J. Kluge, et al. (ISOLDE Collab.), Nucl. Instrum. Methods Phys. Res. B 73, 550 (1993).

    Article  ADS  Google Scholar 

  5. P. Van Duppen, P. Dendooven, M. Huyse, et al., Hyperfine Interact. 74, 193 (1992).

    Article  ADS  Google Scholar 

  6. L. Weissman, U. Köster, R. Catherall, et al., Phys. Rev. C 65, 024315 (2002).

  7. I. D. Moore, T. Kessler, J. Åystö, et al., Hyperfine Interact. 171, 135 (2006).

    Article  ADS  Google Scholar 

  8. R. Seiler, T. Paul, M. Andrist, and F. Merkt, Rev. Sci. Instrum. 76, 103 103 (2005).

    Google Scholar 

  9. S. Hannemann, E. J. van Duijn, and W. Ubachs, Rev. Sci. Instrum. 78, 103 102 (2007).

    Google Scholar 

  10. P. Dupré and T. A. Miller, Rev. Sci. Instrum. 78, 033 102 (2007).

    Google Scholar 

  11. P. Brockman, C. H. Bair, J. C. Barnes, et al., Opt. Lett. 11, 712 (1986).

    Article  ADS  Google Scholar 

  12. G. A. Rines and P. F. Moulton, Opt. Lett. 15, 434 (1990).

    ADS  Google Scholar 

  13. T. D. Raymond and V. A. Smith, Opt. Lett. 16, 33 (1991).

    ADS  Google Scholar 

  14. F. Brandi, D. Neshev, and W. Ubachs, Phys. Rev. Lett. 91, 163 901 (2003).

    Google Scholar 

  15. H. Tomita, C. Mattolat, T. Kessler, et al., “Ultra Trace Determination Scheme for 26Al by High-Resolution Resonance Ionization Mass Spectrometry Using a Pulsed Ti:Sapphire Laser,” J. Nucl. Tech. (in press).

  16. A. E. Siegman, Lasers (Univ. Sci. Books, Sausalito, 1986).

    Google Scholar 

  17. B. A. Bushaw, B. D. Cannon, G. K. Gerke, and T. J. Whitaker, Opt. Lett. 11, 422 (1986)

    ADS  Google Scholar 

  18. A. Kasapi, G. Y. Yin, and M. Jain, Appl. Opt. 35, 1999 (1996).

    ADS  Google Scholar 

  19. T. G. Cooper, J. Billowes, P. Campbell, and M. R. Pearson, J. Phys. G 22, 99 (1996).

    Article  ADS  Google Scholar 

  20. J. Äystö, Nucl. Phys. A 693, 477 (2001).

    Article  ADS  Google Scholar 

  21. B. R. Beck, J. A. Becker, P. Beiersdorfer, et al., Phys. Rev. Lett. 98, 142 501 (2007).

    Google Scholar 

  22. B. Tordoff, T. Eronen, V. V. Elomaa, et al., Nucl. Instrum. Methods Phys. Res. B 252, 347 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kessler.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, T., Tomita, H., Mattolat, C. et al. An injection-seeded high-repetition rate Ti:Sapphire laser for high-resolution spectroscopy and trace analysis of rare isotopes. Laser Phys. 18, 842–849 (2008). https://doi.org/10.1134/S1054660X08070074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X08070074

PACS numbers

Navigation