Skip to main content
Log in

Study of streamer development in high-pressure electric discharge: Applications to excimer lasers

  • Gas Lasers
  • Published:
Laser Physics

Abstract

This work represents a study of the streamer formation in plasma for XeCl excimer laser at high pressure. It is based on a longitudinal mono-dimensional model of the cathodic zone. In this model, we show the possibility of the streamer development in the cathodic sheath and its propagation during the phase of plasma formation. The model gives the space and time evolution of the electron density and the discharge electric field in the presence of the streamer. The obtained results clearly indicate that, for conditions close to experiments for 50–100 ns laser pulse durations and electron power deposition in the MW/cm3 range in a 300 cm3 chamber, the streamer instability, related to the sheath evolution, patently appears. The drift velocity reaches a typical value of about 108 cm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Makarov, J. Phys. D: Appl. Phys. 28, 1083 (1995).

    Article  ADS  Google Scholar 

  2. M. Makarov and Y. Bychhkov, J. Phys. D: Appl. Phys. 29, 350 (1996).

    Article  ADS  Google Scholar 

  3. Q. Zhu, G. Imada, W. Massuda, and K. Yatsui, J. Appl. Phys. 36, 5709 (1997).

    Google Scholar 

  4. A. V. Dem’yanov, I. V. Kochetov, A. P. Napartovich, et al., Plasma Chem. Plasma Process. 16, 121 (1996).

    Article  Google Scholar 

  5. S. V. Pancheshnyi and A. Yu. Starikovskii, J. Phys. D 36, 2683 (2003).

    Article  ADS  Google Scholar 

  6. A. A. Kulikovsky, Phys. Rev. E 57, 7066 (1998).

    Article  ADS  Google Scholar 

  7. R. Dumanchin and J. S. Rocca, C. R. Acad. Sci. 263, 916 (1969).

    Google Scholar 

  8. R. S. Taylor, Appl. Phys. B 41, 1 (1986).

    Article  ADS  Google Scholar 

  9. A. Belasri, J. P. Boeuf, and L. C. Pitchford, J. Appl. Phys. 74, 1553 (1993).

    Article  ADS  Google Scholar 

  10. A. Belasri, Z. Harrache, and T. Baba-Hamed, Plasma Devices Op. 12, 39 (2004).

    Article  Google Scholar 

  11. A. J. Palmer, Appl. Phys. Lett. 25, 138 (1974).

    Article  Google Scholar 

  12. A. Belasri, PhD Thesis (University of Paul Sabatier, Toulouse, 1993).

  13. N. Brenning, I. Axnas, J. O. Nilsson, and J. E. Eninger, IEEE Trans. Plasma Sci. 25, 83 (1997).

    Article  Google Scholar 

  14. R. Morrow and J. J. Lowke, J. Phys. D: Appl. Phys. 30, 614 (1996).

    Article  ADS  Google Scholar 

  15. G. E. Georghiou, R. Morrow, and A. C. Metaxas, J. Phys. D: Appl. Phys. 30, 614 (1996).

    Google Scholar 

  16. A. Hallac, G. E. Georghiou, and A. C. Metaxas, J. Phys. D 36, 2498 (2003).

    Article  ADS  Google Scholar 

  17. A. Belasri, Z. Harrache, and T. Baba-Hamed, Phys. Plasmas 10, 4874 (2003).

    Article  ADS  Google Scholar 

  18. Z. Harrache and A. Belasri, Europhys. Lett. 66(1), 76 (2004).

    Article  ADS  Google Scholar 

  19. R. Riva, M. Legentil, S. Pasquiers, and V. Puech, J. Phys. D: Appl. Phys. 28, 856 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amir Aid, D., Harrache, Z. & Belasri, A. Study of streamer development in high-pressure electric discharge: Applications to excimer lasers. Laser Phys. 17, 12–17 (2007). https://doi.org/10.1134/S1054660X07010033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07010033

PACS numbers

Navigation