Skip to main content
Log in

Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The tribological and wear-resistant behavior of a surface are determined by its morphology, level of defects, degree of crystallinity, and mechanical properties. The surface roughness, crystallite size, dislocations, and point defects are significant parameters on different spatial scales. Advances in methods for supercomputer modeling enable numerical experiments on the atomic level as well as at the nanoscale and microscale. Here, we perform nanoindentation experiments for a system consisting of ~1000 particles, which is the level where precise methods of density functional theory are no longer applicable while empirical potentials are decidedly rough. Defect-formation processes, effects of amorphization on mechanical properties, and irreversible processes of material deformation caused by an indenter are demonstrated at the scale of 2.5 nm. Our results open up new avenues for studying the mechanical and tribological properties of materials by numerical simulations of nanoindentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Chenoweth, A. C. T. van Duin, and W. A. Goddard, Angew. Chem., Int. Ed. 48, 7630 (2009). https://doi.org/10.1002/anie.200902574

    Article  CAS  Google Scholar 

  2. E. C. Neyts, Y. Shibuta, A. C. T. van Duin, et al., ACS Nano 4, 6665 (2010). https://doi.org/10.1021/nn102095y

    Article  CAS  Google Scholar 

  3. J. L. Achtyl, R. R. Unocic, L. J. Xu, et al., Nat. Commun. 6, 6539 (2015). https://doi.org/10.1038/ncomms7539

    Article  CAS  Google Scholar 

  4. A. I. Vakis, V. A. Yastrebov, J. Scheibert, et al., Tribol. Int. 125, 169 (2018). https://doi.org/10.1016/j.triboint.2018.02.005

    Article  Google Scholar 

  5. K. E. Avila, S. Kuchemann, I. A. Alhafeez, et al., Tribol. Int. 139, 1 (2019). https://doi.org/10.1016/j.triboint.2019.06.017

    Article  CAS  Google Scholar 

  6. M. Krief and Y. Ashkenazy, Phys. Rev. E 103, 063307 (2021). https://doi.org/10.1103/PhysRevE.103.063307

    Article  CAS  Google Scholar 

  7. M. S. Radue, B. D. Jensen, S. Gowtham, et al., J. Polym. Sci. B 56, 255 (2018). https://doi.org/10.1002/polb.24539

    Article  CAS  Google Scholar 

  8. Y. Q. Zhang and S. Y. Jiang, Metals 7, 432 (2017). https://doi.org/10.3390/met7100432

    Article  CAS  Google Scholar 

  9. S. R. Cohen and E. Kalfon-Cohen, Beilstein J. Nanotechnol. 4, 815 (2013). https://doi.org/10.3762/bjnano.4.93

    Article  CAS  Google Scholar 

  10. H. Y. Geng, J. Comput. Phys. 283, 299 (2015). https://doi.org/10.1016/j.jcp.2014.12.007

    Article  CAS  Google Scholar 

  11. R. Ruger, E. van Lenthe, Y. Lu, et al., J. Chem. Theory Comput. 11, 157 (2015). https://doi.org/10.1021/ct500838h

    Article  CAS  Google Scholar 

  12. J. J. P. Stewart, J. Mol. Model. 19, 1 (2013). https://doi.org/10.1007/s00894-012-1667-x

    Article  CAS  Google Scholar 

  13. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984). https://doi.org/10.1103/PhysRevB.29.6443

    Article  CAS  Google Scholar 

  14. D. R. Pratt, L. S. Morrissey, and S. Nakhla, Mol. Simul. 46, 923 (2020). https://doi.org/10.1080/08927022.2020.1791859

    Article  CAS  Google Scholar 

  15. T. P. Senftle, S. Hong, M. M. Islam, et al., NPJ Comput. Mater. 2, 15011 (2016). https://doi.org/10.1038/npjcompumats.2015.11

    Article  CAS  Google Scholar 

  16. S. Plimpton, J. Comput. Phys. 117, 1 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  17. H. M. Aktulga, J. C. Fogarty, S. A. Pandit, et al., Parallel Comput. 38, 245 (2012). https://doi.org/10.1016/j.parco.2011.08.005

    Article  Google Scholar 

  18. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  19. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  20. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., J. Chem. Phys. 81, 3684 (1984). https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  21. M. R. LaBrosse, J. K. Johnson, and A. C. T. van Duin, J. Phys. Chem. A 114, 5855 (2010). https://doi.org/10.1021/jp911867r

    Article  CAS  Google Scholar 

  22. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998). https://doi.org/10.1103/PhysRevB.58.11085

    Article  CAS  Google Scholar 

  23. Y. I. Golovin, Phys. Solid State 50, 2205 (2008). https://doi.org/10.1134/S1063783408120019

    Article  CAS  Google Scholar 

  24. W. C. Oliver and G. M. Pharr, J. Mater. Res. 19, 3 (2011). https://doi.org/10.1557/jmr.2004.19.1.3

    Article  Google Scholar 

  25. A. H. Barry, G. Dirras, F. Schoenstein, et al., Mater. Charact. 91, 26 (2014). https://doi.org/10.1016/j.matchar.2014.02.004

    Article  CAS  Google Scholar 

  26. F. Fellah, F. Schoenstein, A. Dakhlaoui-Omrani, et al., Mater. Charact. 69, 1 (2012). https://doi.org/10.1016/j.matchar.2012.03.017

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russain Science Foundation (project no. 21-79-30007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Rusalev.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusalev, Y.V., Guda, A.A., Pashkov, D.M. et al. Molecular-Dynamics Modeling of the Surface Mechanical Properties Using the ReaxFF Potential. J. Surf. Investig. 15 (Suppl 1), S92–S97 (2021). https://doi.org/10.1134/S1027451022020185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022020185

Keywords:

Navigation