Skip to main content
Log in

Lidar method for remote detection of vapors of explosives in the atmosphere

  • Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of studies of possible remote detection of vapors of explosives in the atmosphere using the lidar principle with the use of laser-induced fluorescence are described. Experimental data on the detection of trinitrotoluene (trotyl) vapors at room temperature from a distance of 13 m are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Thiesen, D. W. Hannum, D. W. Murray, and J. E. Parmeter, Survey of Commercially Available Explosives Detection Technologies and Equipment 2004 (Department of Justice, Washington, and U.S., 2005).

    Google Scholar 

  2. J. B. Simeonsson and R. C. Sausa, “A Critical Review of Laser Photofragmentation/Fragment Detection Techniques for Gas Phase Chemical Analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).

    Article  ADS  Google Scholar 

  3. G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Monitoring of Vapor-Phase Nitro Compounds Using 226 nm Radiation: Fragmentation with Subsequent NO Resonance-Enhanced Multiphoton Ionization,” Anal. Chem. 65, 529–533 (1993).

    Article  Google Scholar 

  4. D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-Trinitrotoluene Detection by Laser-Photofragmentation-Laser-induced Fluorescence,” Appl. Opt. 35, 3998–4003 (1996).

    Article  ADS  Google Scholar 

  5. A. D. Usachev, T. S. Miller, J. P. Singh, Yueh Fang-Yu, Jang Ping-Rey, and D. L. Monts, “Optical Properties of Gaseous 2,4,6-Trinitrotoluene in the Ultraviolet Region,” Appl. Spectrosc. 55, 125–129 (2001).

    Article  ADS  Google Scholar 

  6. J. D. Bradshaw, M. O. Rodgers, S. T. Sandholm, S. Kesheng, and D. D. Davis, “A Two-Photon Laser-Induced Fluorescence Field Instrument for Ground-Based and Airborne Measurements of Atmospheric NO,” J. Geophys. Res. D 90, 12.861–12.873 (1985).

    Article  ADS  Google Scholar 

  7. S. T. Sandholm, J. D. Bradshaw, K. S. Dorris, M. O. Rodgers, and D. D. Davis, “An Airborne Compatible Photofragmentation Two-Photon Laser Induced Fluorescence Instrument for Measuring Background Tropospheric Levels of NO, NOx, and NO2,” J. Geophys. Res. D 95, 10.155–10.161 (1990).

    Article  ADS  Google Scholar 

  8. N. Daugey, J. Shu, I. Bar, and S. Rosenwaks, “Nitrobenzene Detection by One-Color Laser Photolysis/Laser Induced Fluorescence of NO (ν′ = 0−3),” Appl. Spectrosc. 53, 57–64 (1999).

    Article  ADS  Google Scholar 

  9. B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, and D. H. Fine, “Vapor Pressure of Explosives,” J. Energetic Mater. 4, 447–472 (1986).

    Article  Google Scholar 

  10. T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation Followed by Laser-Induced Fluorescence at Atmospheric Pressure and 24°C: A Unique Scheme for Remote Detection of Explosives,” Appl. Opt. 40, 6677–6681 (2001).

    Article  ADS  Google Scholar 

  11. D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a Unique Scheme for Remote Detection of Explosives,” Opt. Commun. 204, 327–331 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.M. Bobrovnikov, E.V. Gorlov, 2011, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobrovnikov, S.M., Gorlov, E.V. Lidar method for remote detection of vapors of explosives in the atmosphere. Atmos Ocean Opt 24, 235–241 (2011). https://doi.org/10.1134/S1024856011030055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856011030055

Keywords

Navigation