Skip to main content
Log in

Characterization of Aging Effects during PEM Electrolyzer Operation Using Voltage Instabilities Evolution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The proton exchange membrane electrolyzer (PEMWE) technology is an up-and-coming technology for the hydrogen vector. Although already present in the industry, it still presents several technological drawbacks. One of them concerns MEA, whose price is still high (mainly due to the noble metals used for the catalysts (iridium for example)), for a rather limited lifetime. Indeed, the MEAs degradation’s due to the PEMWE operation’s over a long time is an exciting study criterion, aiming to optimize their lifetime. During a PEMWE operating cycles, the aging mechanism is linked to the different combinations of parameters imposed on it, particularly the current and the set voltage. At the end of MEA life operation, the analysis of the voltage signals behaviour of a PEMWE with time revealed, during changes of operating points, a phenomenon of instability, which increases with the working time. Using mathematical descriptors to quantify these instabilities permit the prediction of the temporal evolution of this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Goodenough, J.B., Energy storage materials: a perspective, Energy Storage Mater., 2015, vol. 1, p. 158.

    Article  Google Scholar 

  2. Koponen, J., Kosonen, A., Ruuskanen, V., Huoman, K., Niemelä, M., and Ahola, J., Control and energy efficiency of PEM water electrolyzers in renewable energy systems, Int. J. Hydrogen Energy, 2017, vol. 42, p. 29648.

    Article  CAS  Google Scholar 

  3. Grigoriev, S.A., Fateev, V.N., Bessarabov, D.G., and Millet, P., Current status, research trends, and challenges in water electrolysis science and technology, Int. J. Hydrogen Energy, 2020, vol. 45, p. 26036.

    Article  CAS  Google Scholar 

  4. Weiß, A., Siebel, A., Bernt, M., Shen, T.-H., Tileli, V., and Gasteiger, H.A., Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer, J. Electrochem. Soc., 2019, vol. 166, p. F487.

    Article  Google Scholar 

  5. Frensch, S.H., Fouda-Onana, F., Serre, G., Thoby, D., Araya, S.S., and Kær, S.K., Influence of the operation mode on PEM water electrolysis degradation, Int. J. Hydrogen Energy, 2019, vol. 44, p. 29889.

    Article  CAS  Google Scholar 

  6. Grigoriev, S.A., Dzhus, K.A., Bessarabov, D.G., and Millet, P., Failure of PEM water electrolysis cells: case study involving anode dissolution and membrane thinning, Int. J. Hydrogen Energy, 2014, vol. 39, p. 20440.

    Article  CAS  Google Scholar 

  7. Silva, R.A., Hashimoto, T., Thompson, G.E., and Rangel, C.M., Characterization of MEA degradation for an open air cathode PEM fuel cell, Int. J. Hydrogen Energy, 2012, vol. 37, p. 7299.

    Article  CAS  Google Scholar 

  8. Siracusano, S., Van Dijk, N., Backhouse, R., Merlo, L., Baglio, V., and Aricò, A.S., Degradation issues of PEM electrolysis MEAs, Renew. Energy, 2018, vol. 123, p. 52.

    Article  CAS  Google Scholar 

  9. Grigoriev, S.A., Bessarabov, D.G., and Fateev, V.N., Degradation mechanisms of MEA characteristics during water electrolysis in solid polymer electrolyte cells, Russ. J. Electrochem., 2017, vol. 53, p. 318.

    Article  CAS  Google Scholar 

  10. Grigoriev, S.A., Bessarabov, D.G., and Glukhov, A.S., On the contamination of membrane-electrode assembles of water electrolyzers with solid polymer electrolyte by the elements of titanium alloys, Russ. J. Electrochem., 2017, vol. 58, p. 808.

    Article  Google Scholar 

  11. Pivac, I., Šimić, B., and Barbir, F., Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells, J. Power Sources, 2017, vol. 365, p. 240.

    Article  CAS  Google Scholar 

  12. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy, Hoboken: John Wiley & Sons, 2005.

    Book  Google Scholar 

  13. Astafiev, E.A. and Ukshe, A., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742.

    Article  Google Scholar 

  14. Martemianov, S., Thomas, A., Adiutantov, N., Denisov, E., Evdokimov, Yu., and Hissel, D., Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain, J. Solid State Electrochem., 2020, vol. 24, p. 3059.

    Article  CAS  Google Scholar 

  15. Li, N., Araya, S.S., Cui, X., and Kær, S.K., The effects of cationic impurities on the performance of proton exchange membrane water electrolyzer, J. Power Sources, 2020, vol. 473, p. 228617.

    Article  CAS  Google Scholar 

  16. Parra-Restrepo, J., Bligny, R., Dillet, J., Didierjean, S., Stemmelen, D., Moyne, C., Degiovanni, A., and Maranzana, G., Influence of the porous transport layer properties on the mass and charge transfer in a segmented PEM electrolyzer, Int. J. Hydrogen Energy, 2020, vol. 45, p. 8094.

    Article  CAS  Google Scholar 

  17. Sun, S., Shao, Z., Yu, H., Li, G., and Yi, B., Investigations on degradation of the long-term proton exchange membrane water electrolysis stack, J. Power Sources, 2014, vol. 267, p. 515.

    Article  CAS  Google Scholar 

  18. Siracusano, S., Baglio, V., Van Dijk, N., Merlo, L., and Aricò, A.S., Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer, Appl. Energy, 2017, vol. 192, p. 477.

    Article  CAS  Google Scholar 

  19. Rozain, C., Mayousse, E., Guillet, N., and Millet, P., Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: part I—pure IrO2-based anodes, Appl. Catal. B: Environ., 2016, vol. 182, p. 153.

    Article  CAS  Google Scholar 

  20. Lee, J.K., Lee, C.H., Fahy, K.F., Zhao, B., LaManna, J.M., Baltic, E., Jacobson, D.L., Hussey, D.S., and Bazylak, A., Critical current density as a performance indicator for gas-evolving electrochemical devices, Cell Rep. Phys. Sci., 2020, vol. 1, p. 100147.

    Article  CAS  Google Scholar 

  21. Majasan, J.O., Cho, J.I.S., Dedigama, I., Tsaoulidis, D., Shearing, P., and Brett, D.J.L., Two-phase flow behaviour and performance of polymer electrolyte membrane electrolyzers: electrochemical and optical characterization, Int. J. Hydrogen Energy, 2018, vol. 43, p. 15659.

    Article  CAS  Google Scholar 

  22. Feng, Q., Yuan X.Z., Liu, G., Wei, B., Zhang, Z., Li, Hui., and Wang, H., A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, J. Power Sources, 2017, vol. 366, p. 33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Martemianov.

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulevard, S., Kadjo, J.J., Thomas, A. et al. Characterization of Aging Effects during PEM Electrolyzer Operation Using Voltage Instabilities Evolution. Russ J Electrochem 58, 258–270 (2022). https://doi.org/10.1134/S102319352204005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352204005X

Keywords:

Navigation