Skip to main content
Log in

Some Observations on the Electrochemical Reactions of Bisphenol A on Polycrystalline Gold in Contact with 0.1 M Aqueous NaClO4 Solution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Experimental results are presented on the electrochemical behavior of BPA at a gold | 0.1 M sodium perchlorate electrode. During the cycling of the electrode potential an adherent thin polymer layer was formed on the electrode. The film buildup process was followed in situ with an electrochemical quartz crystal microbalance (EQCM) and ex situ by electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used for the study of the structure/morphology of the deposited polymer coating. The results imply that polymerization and degradation of the BPA monomer may occur simultaneously during its electrochemical oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Suzuki, A., Sugihara, A., Uchida, K., Sato, T., Ohta, Y., Kats, Y., Watanabe, H., and Iguchi, T., Developmental effects of perinatal exposure to bisphenol-A and diethylstilbestrol on reproductive organs in female mice, Reprod. Toxicol., 2002, vol. 16, p. 107.

    Article  CAS  Google Scholar 

  2. Kim, H.S., Han, S.Y., Yoo, S.D., Lee, B.M., and Park, K.L., Potential estrogenic effects of bisphenol-A estimated by in vitro and in vivo combination assays, J. Toxicol. Sci., 2001, vol. 26, p. 111.

    Article  CAS  Google Scholar 

  3. Rochester, J.R. and Bolden, A.L., Bisphenol S and F systematic review and comparison of the hormonal activity of bisphenol A substitutes, Environ. Health Perspect., 2015, vol. 123, p. 643.

    Article  CAS  Google Scholar 

  4. Petrovic, M., Eljarrat, E., De Alda, M.L., and Barceló, D., Endocrine disrupting compounds and other emerging contaminants in the environment: a survey on new monitoring strategies and occurrence data, Anal. Bioanal. Chem., 2004, vol. 378, p. 549.

    Article  CAS  Google Scholar 

  5. EFSA CEF Panel, Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: executive summary, EFSA J., 2015, vol. 13, p. 23.

  6. Giulivo, M., Lopez de Alda, M., Capri, E., and Barceló, D., Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review, Environ. Res., 2016, vol. 151, p. 251.

    Article  CAS  Google Scholar 

  7. MSC unanimously agrees that Bisphenol A is an endocrine disruptor. https://echa.europa.eu/-/msc-unanimously-agrees-that-bisphenol-a-is-an-endocrine-disruptor.

  8. BPA update: working group to start reviewing new studies. http://www.efsa.europa.eu/en/press/news/180904.

  9. ECHA (European Chemicals Agency) and EFSA (European Food Safety Authority) with the technical support of the Joint Research Centre (JRC), Andersson, N., Arena, M., Auteri, D., Barmaz, S., Grignard, E., Kienzler, A., Lepper, P., Lostia, A.M., Munn, S., Parra Morte, J.M., Pellizzato, F., Tarazona, J., Terron, A., and Van der Linden, S., Guidance for the identification of endocrine disruptors in the context of Regulations (EU), no. 528/2012 (EC) no. 1107/2009, EFSA J., 2018, vol. 16, 5311 (pp. 1–135).

  10. Rajeshwar, K. and Ibáñez, J.G., Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement, New York: Acad. Press, 1997.

    Google Scholar 

  11. Rudd, E. and Conway, B.E., Proc. Electrochemical Society Symp. on Water Purification by Photocatalytic, Photoelectrochemical Procedures and Electrochemical Procedures, Pennington, NJ: Electrochemical Society, 1994, p. 94.

  12. Boscolo Boscoletto, A., Gottardi, F., Milan, L., Pannocchia, P., Tartari, V., Tavan, M., Amadelli, R., De Battisti, A., Barbieri, A., Patracchini, D., and Battaglin, G., Electrochemical treatment of bisphenol-A containing wastewaters, J. Appl. Electrochem., 1994, vol. 24, p. 1052.

    Article  Google Scholar 

  13. Matsumoto, K., David B Tiu., Kawamura, A., Advincula, R.C., and Miyata, T., QCM sensing of bisphenol A using molecularly imprinted hydrogel/conducting polymer matrix, Polym. J., 2016, vol. 48, p. 525.

    Article  CAS  Google Scholar 

  14. Gatidou, G., Thomaidis, N.S., Stasinakis, A.S., and Lekkas, T.D., Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography-mass spectrometry, J. Chromatogr. A, 2007, vol. 1138, p. 32.

    Article  CAS  Google Scholar 

  15. Ballesteros-Gomez, A., Rubio, S., and Perez-Bendito, D., Analytical methods for the determination of bisphenol A in food, J. Chromatogr. A, 2009, vol. 1216, p. 449.

    Article  CAS  Google Scholar 

  16. Panizza, M. and Cerisola, G., Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 2009, vol. 109, p. 6541.

    Article  CAS  Google Scholar 

  17. Dong, X., Qi, X., Liu, N., Yang, Y., and Piao, Y., Direct electrochemical detection of bisphenol A using a highly conductive graphite nanoparticle film electrode, Sensors, 2017, vol. 17, p. 836.

    Article  Google Scholar 

  18. Li, X., Cui, Y., Feng, Y., Xie, Z., and Gu, J., Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes, Water Res., 2005, vol. 39, p. 1972.

    Article  CAS  Google Scholar 

  19. Mengoli, G. and Musiani, M.M., Protective coatings on iron by anodic oxidation of phenols in oxalic acid medium, Electrochim. Acta, 1986, vol. 31, p. 201.

    Article  CAS  Google Scholar 

  20. Kuramitz, H., Nakata, Y., Kawasaki, M., and Tanaka, S., Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode, Chemosphere, 2001, vol. 45, p. 37.

    Article  CAS  Google Scholar 

  21. Cui, Y., Li, X., and Chen, G., Electrochemical degradation of bisphenol A on different anodes, Water Res., 2009, vol. 43, p. 1968.

    Article  CAS  Google Scholar 

  22. Obirai, J., Bedioui, F., and Nyokong, T., Electro-oxidation of phenol and its derivatives on poly-Ni(OH)TPhPyPc modified vitreous carbon electrodes, J. Electroanal. Chem., 2005, vol. 576, p. 323.

    Article  CAS  Google Scholar 

  23. Agboola, B.O., Ozoemena, K.I., and Nyokong, T., Electrochemical properties of benzylmercapto and dodecylmercapto tetra substituted nickel phthalocyanine complexes: electrocatalytic oxidation of nitrite, Electrochim. Acta, 2006, vol. 51, p. 6470.

    Article  CAS  Google Scholar 

  24. Agboola, B. and Nyokong, T., Electrocatalytic oxidation of chlorophenols by electropolymerised nickel(II) tetrakis benzylmercapto and dodecylmercapto metallophthalocyanines complexes on gold electrodes, Electrochim. Acta, 2007, vol. 52, p. 5039.

    Article  CAS  Google Scholar 

  25. Chauke, V., Matemadombo, F., and Nyokong, T., Remarkable sensitivity for detection of bisphenol A on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni–O–Ni bridges, J. Hazard. Mater., 2010, vol. 178, p. 180.

    Article  CAS  Google Scholar 

  26. Zhu, Y., Zhou, C., Yan, X., Yan, Y., and Wang, Q., Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum, Anal. Chim. Acta, 2015, vol. 883, p. 81.

    Article  CAS  Google Scholar 

  27. Hou, C., Tang, W.X., Zhang, C., Wang, Y.F., and Zhu, N.N., A novel and sensitive electrochemical sensor for bisphenol A determination based on carbon black supporting ferroferric oxide nanoparticles, Electrochim. Acta, 2014, vol. 144, p. 324.

    Article  CAS  Google Scholar 

  28. Piao, Y., Han, D.J., and Seo, T.S., Highly conductive graphite nanoparticle based enzyme biosensor for electrochemical glucose detection, Sens. Actuat. B-Chem., 2014, vol. 194, p. 454.

    Article  CAS  Google Scholar 

  29. Nikoleli, G., Nikolelis, D.P., Tzamtzis, N., and Psaroudakis, N., A selective immunosensor for D-dimer based on antibody immobilized on a graphene electrode with incorporated lipid films, Electroanalysis, 2014, vol. 26, p. 1522.

    Article  CAS  Google Scholar 

  30. Varmira, K., Saed-Mocheshi, M., and Jalalvand, A.R., Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: a comprehensive review, Sens. Bio-Sens. Res., 2017, vol. 15, p. 17.

    Article  Google Scholar 

  31. Monzo, J., Malewski, Y., Vidal-Iglesias, F.J., Solla-Gullon, J., and Rodriguez, P., Electrochemical oxidation of small organic molecules on Au nanoparticles with preferential surface orientation, ChemElectroChem, 2015, vol. 2, p. 958.

    Article  CAS  Google Scholar 

  32. Inzelt, G. and Láng, G.G., Electrochemical Impedance Spectroscopy (EIS) for Polymer Characterization, in Electropolymerization: Concepts, Materials and Applications, Weinheim: Wiley, 2010.

    Google Scholar 

  33. Zalka, D., Kovács, N., Szekeres, K., Ujvári, M., Vesztergom, S., Eliseeva, S., Kondratiev, V., and Láng, G.G., Determination of the charge transfer resistance of poly(3,4-ethylenedioxythiophene)-modified electrodes immediately after overoxidation, Electrochim. Acta, 2017, vol. 247, p. 321.

    Article  CAS  Google Scholar 

  34. Inzelt, G. and Láng, G., Impedance analysis of poly(tetracyanoquinodimethane) electrodes: effect of electrolyte concentration and temperature, Electrochim. Acta, 1991, vol. 36, p. 1355.

    Article  CAS  Google Scholar 

  35. Szekeres, K.J., Hegedus, K., Ujvári, M., and Láng, G.G., Investigation of the electrochemical properties of poly(3,4-ethylenedioxypyrrole) films electrodeposited from aqueous solutions, J. Electroanal. Chem., 2018, vol. 826, p. 16.

    Article  CAS  Google Scholar 

  36. Inzelt, G., Conducting Polymers: a New Era in Electrochemistry, Berlin, Heidelberg: Springer, 2012.

    Book  Google Scholar 

  37. Láng, G.G., Ujvári, M., Vesztergom, S., Kondratiev, V., Gubicza, J., and Szekeres, K.J., The electrochemical degradation of poly(3,4-ethylenedioxythiophene) films electrodeposited from aqueous solutions, Z. Phys. Chem., 2016, vol. 230, p. 1281.

    Article  Google Scholar 

  38. Kuramitz, H., Matsushita, M., and Tanaka, S., Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode, Water Res., 2004, vol. 38, p. 2331.

    Article  CAS  Google Scholar 

  39. Gözmen, B., Oturan, M.A., Oturan, N., and Erbatur, O., Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton’s reagent, Environ. Sci. Technol., 2003, vol. 37, p. 3716.

    Article  Google Scholar 

  40. Maeda, H., Okada, T., Matsumoto, Y., Katayama, K., Yamauchi, Y., and Ohmori, H., Electrochemical coating with poly(phenylene oxide) films bearing oligoether groups as a tool for elimination of protein adsorption to electrode surface, Anal. Sci., 1999, vol. 15, p. 633.

    Article  CAS  Google Scholar 

  41. Zhang, J., Li, Q., Chena, M., Li, H., and Xu, Z., Electrochemically monitoring the removal of bisphenol A based on its anodic deposition at an ITO electrode, Sens. Actuat. B Chem., 2011, vol. 160, p. 784.

    Article  CAS  Google Scholar 

  42. Pereira, G.F., Rocha-Filho, R.C., Bocchi, N., and Biaggio, S.N., Electrochemical degradation of bisphenol A using a flow reactor with a boron-doped diamond anode, Chem. Eng. J., 2012, vols. 198–199, p. 282.

    Article  Google Scholar 

  43. Li, Q., Li, H., Zhang, J., and Xu, Z., A novel pH potentiometric sensor based on electrochemically synthesized polybisphenol A films at an ITO electrode, Sens. Actuat. B Chem., 2011, vol. 155, p. 730.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was completed in the ELTE Institutional Excellence Program (1783-3/2018/FEKUTSRAT), supported by the NNKP-18-3 New National Excellence Program of the Ministry of Human Capacities.

Funding

Financial support from the Hungarian Scientific Research Fund—OTKA, the National Research, Development and Innovation Office—NKFI (grant no. K 129210) is gratefully acknowledged. The research within project no. VEKOP-2.3.2-16-2017-00013 by G.G. Láng was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Láng.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to the 80th anniversary of Professor V.V. Malev who has made a considerable contribution into modern directions of electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szekeres, K.J., Fekete, É., Ujvári, M. et al. Some Observations on the Electrochemical Reactions of Bisphenol A on Polycrystalline Gold in Contact with 0.1 M Aqueous NaClO4 Solution. Russ J Electrochem 55, 1127–1135 (2019). https://doi.org/10.1134/S1023193519110132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519110132

Keywords:

Navigation