Skip to main content
Log in

The critical role of the transition-state cusp diameter in understanding adiabatic and non-adiabatic electron transfer

  • Section 3. Electron Transfer Kinetics and Electrochemical Processes
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The equation of Levich and Dogonadze describing the rate of electron-transfer processes in the weak-coupling “non-adiabatic” limit is understood in terms of the properties of general adiabatic electron-transfer theory. The cusp diameter describing the continuous changeover of Born–Oppenheimer adiabatic surfaces from donor-like to acceptor-like character is shown to be the critical property controlling reaction rates and intervalence spectra. Their work is presented in the context of general Born–Oppenheimer breakdown phenomena and linked to the overarching cusp catastrophe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levich, V.G. and Dogonadze, R.R., Theory of rediationless electron transitions between ions in solution, Proc. Akad. Nauk SSSR, 1959, vol. 24, pp. 9–13.

    Google Scholar 

  2. Levich, V.G. and Dogonadze, R.R., Adiabatic theory for electron-transfer processes in solution, Proc. Akad. Nauk SSSR, 1960, vol. 133, pp. 156–180.

    Google Scholar 

  3. Levich, V.G. and Dogonadze, R.R., Adiabatic theory of electron-transfer processes in solution, Collect. Czech. Chem. Commun., 1961, vol. 26, p. 193.

    Article  CAS  Google Scholar 

  4. Levich, V.G., Present state of the theory of oxidation–reduction in solution (bulk and electrode reactions), in Advances in Electrochemistry and Electrochemical Engineering, vol. 4, Delahaye, P., New York: Interscience Publishers, 1966, p. 249.

    Google Scholar 

  5. Marcus, R.A. and Sutin, N., Electron transfers in chemistry and biology, Biochim. Biophys. Acta, 1985, vol. 811, p. 265.

    Article  CAS  Google Scholar 

  6. Kuznetsov, A. and Ulstrup, J., Electron Transfer in Chemistry and Biology: An Introduction to the Theory, Chichester: Wiley, 1998.

    Google Scholar 

  7. Kubo, R. and Toyozawa, Y., Application of the method of generating function to radiative and non- ‡ = 2 q b (Qx ) radiative transitions of a arapped electron in a crystal, Prog. Theor. Phys., 1955, vol. 13, p. 160.

    Article  Google Scholar 

  8. Dirac, P.A.M., The quantum theory of the emission and absorption of radiation, Proc. Royal Soc. London, Ser. A, 1927, vol. 114, p. 243.

    Article  CAS  Google Scholar 

  9. Libby, W.F., Theory of electron exchange reactions in aqueous solution, J. Phys. Chem., 1952, vol. 56, p. 863.

    Article  CAS  Google Scholar 

  10. Marcus, R.J., Zwolinski, B.J., and Eyring, H., The electron tunnelling hypothesis for electron ex-change reactions, J. Phys. Chem., 1954, vol. 58, p. 432.

    Article  CAS  Google Scholar 

  11. Weiss, J., On the theory of electron-transfer processes in aqueous solutions, Proc. R. Soc. London, Ser. A, 1954, vol. 222, p. 128.

    Article  CAS  Google Scholar 

  12. Marcus, R.A., On the theory of oxidation-reduction reactions involving electron transfer, Part I, J. Chem. Phys., 1956, vol. 24, p. 966.

    Article  CAS  Google Scholar 

  13. Holstein, T., Studies of polaron motion, Part II: The “small” polaron, Annals Physics, 1959, vol. 8, p. 343.

    Article  CAS  Google Scholar 

  14. Holstein, T., Studies of polaron motion, Part I: The molecular-crystal model, Annals Physics, 1959, vol. 8, p. 325.

    Article  CAS  Google Scholar 

  15. Lax, M., The Franck–Condon principle and its application to crystals, J. Chem. Phys., 1952, vol. 20, p. 1752.

    Article  CAS  Google Scholar 

  16. Mielke, S.L., Tawa, G.J., Truhlar, D.G., and Schwenke, D.W., Quantum photochemistry. Accurate quantum scattering calculations for an electronically nonadiabatic reaction, Chem. Phys. Lett., 1995, vol. 234, p. 57.

    Article  CAS  Google Scholar 

  17. Polanyi, J.C. and Zewail, A.H., Direct observation of the transition state, Accounts Chem. Res., 1995, vol. 28, p. 119.

    Article  CAS  Google Scholar 

  18. Reimers, J.R., The importance of motions that accompany those occurring along the reaction coordinate, Aust. J. Chem., 2015, vol. 68, p. 1202.

    CAS  Google Scholar 

  19. Hush, N.S., Adiabatic rate processes at electrodes, J. Chem. Phys., 1958, vol. 28, p. 962.

    Article  CAS  Google Scholar 

  20. Hush, N.S., in Soviet electrochemistry: Proceedings of the Fourth Conference on Electrochemistry 1956, Frumkin, A.N., Ed., New York: Consultants Bureau, 1961, p. 99.

    Google Scholar 

  21. Delahay, P., Advances in Electrochemistry and Electrochemical Engineering, vol. 4, Electrochemistry, New York, N.Y.: Interscience, 1966.

    Google Scholar 

  22. Reimers, J.R., McKemmish, L., McKenzie, R.H., and Hush, N.S., Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born–Oppenheimer breakdown corrections, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 24640.

    Google Scholar 

  23. London, F., Zur Quantentheorie der homöopolaren Valenzzahlen, Z. Phys., 1928, vol. 46, p. 455.

    Article  CAS  Google Scholar 

  24. London, F., On the theory of non-adiabatic chemical reactions, Z. Phys., 1932, vol. 74, p. 143.

    Article  CAS  Google Scholar 

  25. Eyring, H. and Polanyi, M., Concerning simple gas reactions, Z. Phys. Chem. Abt. B, 1931, vol. 12, p. 279.

    CAS  Google Scholar 

  26. Evans, M.G. and Polanyi, M., Inertia and driving force of chemical reactions, Trans. Faraday Soc., 1938, vol. 34, p. 11.

    Article  CAS  Google Scholar 

  27. Horiuti, J. and Polanyi, M., Outlines of a theory of proton transfer, J. Mol. Catalysis A, 2003, vol. 199, p. 185; Translation of Acta Physicochimica U.R.S.S, 1935, vol., pp. 505–532.

    Article  CAS  Google Scholar 

  28. Wall, F.T. and Glockler, G., The double minimum problem applied to the ammonia molecules, J. Chem. Phys., 1937, vol. 5, p. 314.

    Article  CAS  Google Scholar 

  29. Hush, N.S., Quantum-mechanical discussion of the gas phase formation of quinonedimethide monomers, J. Polymer Sci., 1953, vol. 11, p. 289.

    Article  CAS  Google Scholar 

  30. Reimers, J.R., McKemmish, L., McKenzie, R.H., and Hush, N.S., A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 24598.

    Article  CAS  Google Scholar 

  31. Schmickler, W., A theory of adiabatic electron-transfer reactions, J. Electroanalyt. Chem. Interfacial Electrochem., 1986, vol. 204, p. 31.

    Article  CAS  Google Scholar 

  32. Hush, N.S., Electron transfer in retrospect and prospect 1: Adiabatic electrode processes, J. Electroanal. Chem., 1999, vol. 460, p. 5.

    Article  CAS  Google Scholar 

  33. Reimers, J.R., McKemmish, L., McKenzie, R.H., and Hush, N.S., Bond angle variations in XH3 [X = N, P, As, Sb, Bi]: The critical role of Rydberg orbitals exposed using a diabatic state model, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 24618.

    Article  CAS  Google Scholar 

  34. McKemmish, L.K., McKenzie, R.H., Hush, N.S., and Reimers, J.R., Quantum entanglement between electronic and vibrational degrees of freedom in molecules, J. Chem. Phys., 2011, vol. 135, p. 244110.

    Article  CAS  Google Scholar 

  35. McKemmish, L., McKenzie, R.H., Hush, N.S., and Reimers, J.R., Electron-vibration entanglement in the Born–Oppenheimer description of chemical reactions and spectroscopy, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 24666.

    Article  CAS  Google Scholar 

  36. Born, M. and Oppenheimer, R., Zur Quantentheorie der Molekeln, Ann. Phys., 1927, vol. 84, p. 457.

    Article  CAS  Google Scholar 

  37. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford: Clarendon, 1954.

    Google Scholar 

  38. Ballhausen, C.J. and Hansen, A.E., Electronic spectra, Annu. Rev. Phys. Chem., 1972, vol. 23, p. 15.

    Article  CAS  Google Scholar 

  39. Hush, N.S., Electron delocalization, structure and dynamics in mixed-valence systems, NATO Adv. Study Inst. Ser., Ser. C, 1980, vol. 58, p. 151.

    CAS  Google Scholar 

  40. Marcus, R.A., Chemical and electrochemical electron-transfer theory, Annu. Rev. Phys. Chem., 1964, vol. 15, p. 155.

    Article  CAS  Google Scholar 

  41. Shi, Z. and Boyd, R.J., Charge development at the transition state: a second-order Moeller-Plesset perturbation study of gas-phase SN2 reactions, J. Am. Chem. Soc., 1991, vol. 113, p. 1072.

    Article  CAS  Google Scholar 

  42. Williams, A., Effective charge and transition-state structure in solution, in Adv. Phys. Org. Chem., Bethell, D., Academic Press, 1992, p. 1.

    Google Scholar 

  43. Aragonès, A.C., Haworth, N.L., Darwish, N., Ciampi, S., Bloomfield, N.J., Wallace, G.G., Diez-Perez, I., and Coote, M.L., Electrostatic catalysis of a Diels–Alder reaction, Nature, 2016, vol. 531, p. 88.

    Article  CAS  Google Scholar 

  44. Shaik, S., Mandal, D., and Ramanan, R., Oriented electric fields as future smart reagents in chemistry, Nat. Chem., 2016, vol. 8, p. 1091.

    Article  CAS  Google Scholar 

  45. Wu, Y. and Boxer, S.G., A Critical test of the electrostatic contribution to catalysis with noncanonical amino acids in ketosteroid isomerase, J. Am. Chem. Soc., 2016, vol. 138, p. 11890.

    Article  CAS  Google Scholar 

  46. Andrews, D.L., Biological Energy 5: Electron Transfer Theory, Institute of Physics, 2016. biologicalphysics. iop.org/cws/article/lectures/53592.

    Google Scholar 

  47. Hush, N.S., Inequivalent XPS [X-ray photoelectron spectroscopy] binding energies in symmetrical delocalized mixed-valence complexes, Chem. Phys., 1975, vol. 10, p. 361.

    Article  CAS  Google Scholar 

  48. Öpik, U. and Pryce, M.H.L., Studies of the Jahn- Teller effect, I: A survey of the static problem, Proc. R. Soc. London, A, 1957, vol. 238, p. 425.

    Article  Google Scholar 

  49. Saunders, P.T., An Introduction to Catastrophe Theory, Cambridge: Cambridge University Press, 1980.

    Book  Google Scholar 

  50. Xu, F., Application of catastrophe theory to the ΔG–to–ΔG relationship in electron transfer reactions, Z. Phys. Chem., 1990, vol. 166, p. 79.

    Article  CAS  Google Scholar 

  51. Krokidis, X., Silvi, B., Dezarnaud-Dandine, C., and Sevin, A., Topological study, using a coupled ELF and catastrophe theory technique, of electron transfer in the Li + Cl2 system, New J. Chem., 1998, vol. 22, p. 1341.

    Article  CAS  Google Scholar 

  52. Wales, D.J., A microscopic basis for the global appearance of energy landscapes, Science, 2001, vol. 293, p. 2067.

    Article  CAS  Google Scholar 

  53. Tishchenko, O., Truhlar, D.G., Ceulemans, A., and Nguyen, M.T., A unified perspective on the hydrogen atom transfer and proton-coupled electron transfer mechanisms in terms of topographic features of the ground and excited potential energy surfaces as exemplified by the reaction between phenol and radicals, J. Am. Chem. Soc., 2008, vol. 130, p. 7000.

    Article  CAS  Google Scholar 

  54. Bersuker, I.B., Gorinchoi, N.N., and Polinger, V.Z., On the origin of dynamic instability of molecular systems, Theor. Chim. Acta, 1984, vol. 66, p. 161.

    Article  CAS  Google Scholar 

  55. Bersuker, I.B., Pseudo-Jahn—Teller effect–A twostate paradigm in formation, deformation, and transformation of molecular systems and solids, Chem. Rev., 2013, vol. 113, p. 1351.

    Article  CAS  Google Scholar 

  56. Thompson, T.C., Truhlar, D.G., and Mead, C.A., On the form of the adiabatic and diabatic representation and the validity of the adiabatic approximation for X[sub 3] Jahn–Teller systems, J. Chem. Phys., 1985, vol. 82, p. 2392.

    Article  CAS  Google Scholar 

  57. Kendrick, B.K., Mead, C.A., and Truhlar, D.G., Properties of nonadiabatic couplings and the generalized Born–Oppenheimer approximation, Chem. Phys., 2002, vol. 277, p. 31.

    Article  CAS  Google Scholar 

  58. Zhu, C., Jasper, A.W., and Truhlar, D.G., Non- Born–Oppenheimer trajectories with self-consistent decay of mixing, J. Chem. Phys., 2004, vol. 120, p. 5543.

    Article  CAS  Google Scholar 

  59. Jasper, A.W. and Truhlar, D.G., Non-Born–Oppenheimer molecular dynamics for conical intersections, avoided crossings, and weak interactions, Adv. Ser. Phys. Chem., 2011, vol. 17, p. 375.

    CAS  Google Scholar 

  60. Kolos, W. and Wolniewicz, L., Improved theoretical ground-state energy of the hydrogen molecule, J. Chem. Phys., 1968, vol. 49, p. 404.

    Article  CAS  Google Scholar 

  61. Garrett, B.C. and Truhlar, D.G., Nuclear-motion corrections to Born–Oppenheimer barrier heights for chemical reactions, J. Chem. Phys., 1985, vol. 82, p. 4543.

    Article  CAS  Google Scholar 

  62. Mielke, S.L., Schwenke, D.W., and Peterson, K.A., Benchmark calculations of the complete configuration-interaction limit of Born–Oppenheimer diagonal corrections to the saddle points of isotopomers of the H + H[sub 2] reaction, J. Chem. Phys., 2005, vol. 122, p. 224313.

    Article  CAS  Google Scholar 

  63. Azumi, T. and Matsuzaki, K., What does term vibronic-coupling mean, Photochem. Photobiol., 1977, vol. 25, p. 315.

    Article  CAS  Google Scholar 

  64. Handy, N.C., Yamaguchi, Y., and Schaefer Iii, H.F., The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH[sub 2] and other molecular effects, J. Chem. Phys., 1986, vol. 84, p. 4481.

    Article  CAS  Google Scholar 

  65. Jensen, J.O. and Yarkony, D.R., On the evaluation of non-Born–Oppenheimer interactions for Born–Oppenheimer wave functions, V: A body fixed frame approach. Applications to isotope effects on equilibrium geometries and the adiabatic correction for the X [sup 1] Sigma [sup + ] state of LiH, J. Chem. Phys., 1988, vol. 89, p. 975.

    Article  CAS  Google Scholar 

  66. Valeev, E.F. and Sherrill, C.D., The diagonal Born–Oppenheimer correction beyond the Hartree–Fock approximation, J. Chem. Phys., 2003, vol. 118, p. 3921.

    Article  CAS  Google Scholar 

  67. Gauss, J., Tajti, A., Kallay, M., Stanton, J.F., and Szalay, P.G., Analytic calculation of the diagonal Born–Oppenheimer correction within configuration-interaction and coupled-cluster theory, J. Chem. Phys., 2006, vol. 125, p. 144111.

    Article  CAS  Google Scholar 

  68. Werner, H.-J., Kallay, M., and Gauss, J. The barrier height of the F + H2 reaction revisited: Coupled-cluster and multireference configuration-interaction benchmark calculations, J. Chem. Phys., 2008, vol. 128, p. 034305/1.

    Article  CAS  Google Scholar 

  69. Mohallem, J.R., Coura, T.d.O., Diniz, L.G., De, C.G., Assafrao, D., and Heine, T., Adiabatic corrections to density functional theory energies and wave functions, J. Phys. Chem. A, 2008, vol. 112, p. 8896.

    Article  CAS  Google Scholar 

  70. Mohallem, J.R., Semiempirical evaluation of post- Hartree–Fock diagonal-Born–Oppenheimer corrections for organic molecules, J. Chem. Phys., 2008, vol. 128, p. 144113/1.

    Article  CAS  Google Scholar 

  71. Tajti, A., Szalay, P.G., and Gauss, J., Perturbative treatment of the electron-correlation contribution to the diagonal Born–Oppenheimer correction, J. Chem. Phys., 2007, vol. 127, p. 014102/1.

    Article  CAS  Google Scholar 

  72. Crawford, T.D., Sherrill, C.D., Valeev, E.F., Fermann, J.T., King, R.A., Leininger, M.L., Brown, S.T., Janssen, C.L., Seidl, E.T., Kenny, J.P., and Allen, W.D., PSI3: An open-source ab initio electronic structure package, J. Comput. Chem., 2007, vol. 28, p. 1610.

    Article  CAS  Google Scholar 

  73. Harding, M.E. and Klopper, W., Benchmarking the lithium-thiophene complex, Chem. Phys. Chem., 2013, vol. 14, p. 708.

    Article  CAS  Google Scholar 

  74. Przybytek, M. and Jeziorski, B., Long-range asymptotic expansion of the diagonal Born–Oppenheimer correction, Chem. Phys., 2012, vol. 401, p. 170.

    Article  CAS  Google Scholar 

  75. Pavanello, M., Adamowicz, L., Alijah, A., Zobov, N.F., Mizus, I.I., Polyansky, O.L., Tennyson, J., Szidarovszky, T., and Csaszar, A.G., Calibrationquality adiabatic potential energy surfaces for H3+ and its isotopologues, J. Chem. Phys., 2012, vol. 136, p. 184303/1.

    Article  CAS  Google Scholar 

  76. DeYonker, N.J. and Allen, W.D., Taming the lowlying electronic states of FeH, J. Chem. Phys., 2012, vol. 137, p. 234303/1.

    Article  CAS  Google Scholar 

  77. Bozkaya, U., Turney, J.M., Yamaguchi, Y., and Schaefer, H.F., III. The lowest-lying electronic singlet and triplet potential energy surfaces for the HNO–NOH system: Energetics, unimolecular rate constants, tunneling and kinetic isotope effects for the isomerization and dissociation reactions, J. Chem. Phys., 2012, vol. 136, p. 164303/1.

    Article  CAS  Google Scholar 

  78. Yachmenev, A., Yurchenko, S.N., Ribeyre, T., and Thiel, W., High-level ab initio potential energy surfaces and vibrational energies of H2CS, J. Chem. Phys., 2011, vol. 135, p. 074302/1.

    Article  CAS  Google Scholar 

  79. Rao, T.R. and Mahapatra, S., Nuclear motion on the orbitally degenerate electronic ground state of fully deuterated triatomic hydrogen, J. Chem. Phys., 2011, vol. 134, p. 204307/1.

    Article  CAS  Google Scholar 

  80. Meier, P., Neff, M., and Rauhut, G., Accurate vibrational frequencies of borane and its isotopologues, J. Chem. Theory Comput., 2011, vol. 7, p. 148.

    Article  CAS  Google Scholar 

  81. Lievin, J., Demaison, J., Herman, M., Fayt, A., and Puzzarini, C., Comparison of the experimental, semiexperimental and ab initio equilibrium structures of acetylene: Influence of relativistic effects and of the diagonal Born–Oppenheimer corrections, J. Chem. Phys., 2011, vol. 134, p. 064119/1.

    Article  CAS  Google Scholar 

  82. Holka, F., Szalay, P.G., Fremont, J., Rey, M., Peterson, K.A., and Tyuterev, V.G., Accurate ab initio determination of the adiabatic potential energy function and the Born–Oppenheimer breakdown corrections for the electronic ground state of LiH isotopologues, J. Chem. Phys., 2011, vol. 134, p. 094306/1.

    Article  CAS  Google Scholar 

  83. Klopper, W., Bachorz, R.A., Tew, D.P., and Hattig, C., Sub-meV accuracy in first-principles computations of the ionization potentials and electron affinities of the atoms H to Ne, Phys. Rev. A: At., Mol., Opt. Phys., 2010, vol. 81, p. 022503/1.

    Article  CAS  Google Scholar 

  84. Karton, A. and Martin, J.M.L., Performance of W4 theory for spectroscopic constants and electrical properties of small molecules, J. Chem. Phys., 2010, vol. 133, p. 144102.

    Article  CAS  Google Scholar 

  85. Bozkaya, U., Turney, J.M., Yamaguchi, Y., and Schaefer, H.F., III. The barrier height, unimolecular rate constant, and lifetime for the dissociation of HN2, J. Chem. Phys., 2010, vol. 132, p. 064308/1.

    Article  CAS  Google Scholar 

  86. Mielke, S.L., Schwenke, D.W., Schatz, G.C., Garrett, B.C., and Peterson, K.A., Functional representation for the Born–Oppenheimer diagonal correction and Born–Huang adiabatic potential energy surfaces for isotopomers of H3, J. Phys. Chem. A, 2009, vol. 113, p. 4479.

    Article  CAS  Google Scholar 

  87. Hobson, S.L., Valeev, E.F., Csaszar, A.G., and Stanton, J.F., Is the adiabatic approximation sufficient to account for the post-Born–Oppenheimer effects on molecular electric dipole moments?, Mol. Phys., 2009, vol. 107, p. 1153.

    Article  CAS  Google Scholar 

  88. Hirata, S., Miller, E.B., Ohnishi, Y.-y., and Yagi, K., On the validity of the Born–Oppenheimer separation and the accuracy of diagonal corrections in anharmonic molecular vibrations, J. Phys. Chem. A, 2009, vol. 113, p. 12461.

    Article  CAS  Google Scholar 

  89. Schwenke, D.W., Beyond the potential energy surface: Ab initio corrections to the Born–Oppenheimer approximation for H2O, J. Phys. Chem. A, 2001, vol. 105, p. 2352.

    Article  CAS  Google Scholar 

  90. Newton, M.D. and Sutin, N., Electron transfer reactions in condensed phases, Annu. Rev. Phys. Chem., 1984, vol. 35, p. 437.

    Article  CAS  Google Scholar 

  91. Jasper, A.W., Kendrick, B.K., Mead, C.A., and Truhlar, D.G., Non-Born–Oppenheimer chemistry: Potential surfaces, couplings, and dynamics, Adv. Ser. Phys. Chem., 2004, vol. 14, p. 329.

    CAS  Google Scholar 

  92. Lee, S.-H., Larsen, A.G., Ohkubo, K., Cai, Z.-L., Reimers, J.R., Fukuzumi, S., and Crossley, M.J., Long-lived long-distance photochemically induced spin-polarized charge separation in β,β'-pyrrolic fused ferrocene-porphyrin-fullerene systems, Chem. Sci., 2012, vol. 3, p. 257.

    Article  CAS  Google Scholar 

  93. Yin, S., Li, L., Yang, Y., and Reimers, J.R., Challenges for the accurate simulation of anisotropic charge mobilities through organic molecular crystals: The β phase of mer-Tris(8-hydroxyquinolinato)aluminum(III) (Alq3) crystal, J. Phys. Chem. C, 2012, vol. 116, p. 14826.

    Article  CAS  Google Scholar 

  94. Norton, J.E. and Brédas, J.L., Polarization energies in oligoacene semiconductor crystals, J. Am. Chem. Soc., 2008, vol. 130, p. 12377.

    Article  CAS  Google Scholar 

  95. Hush, N.S., Intervalence-transfer absorption, II: Theoretical considerations and spectroscopic data, Prog. Inorg. Chem., 1967, vol. 8, p. 391.

    CAS  Google Scholar 

  96. Kjaer, A.M. and Ulstrup, J., Solvent bandwidth dependence and band asymmetry features of chargetransfer transitions in N-pyridinium phenolates, J. Am. Chem. Soc., 1987, vol. 109, p. 1934.

    Article  CAS  Google Scholar 

  97. Reimers, J.R. and Hush, N.S., Electronic properties of transition-metal complexes determined from electro- absorption spectroscopy II mono-nuclear complexes of ruthenium(II), J. Phys. Chem., 1991, vol. 95, p. 9773.

    Article  CAS  Google Scholar 

  98. Reimers, J.R. and Hush, N.S., The effects of couplings to symmetric and antisymmetric modes and minor asymmetries on the spectral properties of mixed-valence and related charge-transfer systems, Chem. Phys., 1996, vol. 208, p. 177.

    Article  CAS  Google Scholar 

  99. Reimers, J.R. and Hush, N.S., Hamiltonian operators including both symmetric and antisymmetric vibrational modes for vibronic-coupling and intervalence charge-transfer applications, Chem. Phys., 2004, vol. 299, p. 79.

    Article  CAS  Google Scholar 

  100. Lockhart, D.J. and Boxer, S.G., Electric field modulation of the fluorescence spectrum from rhodobacter sphaeroides reaction centers, Chem. Phys. Lett., 1988, vol. 144, p. 243.

    Article  CAS  Google Scholar 

  101. Boxer, S.G., Goldstein, R.A., Lockhart, D.J., Middendorf, T.R., and Takiff, L., Excited states, electrontransfer reactions, and intermediates in bacterial photosynthetic reaction centers, J. Phys. Chem., 1989, vol. 93, p. 8280.

    Article  CAS  Google Scholar 

  102. Fried, S.D., Bagchi, S., and Boxer, S.G., Extreme electric fields power catalysis in the active site of ketosteroid isomerase, Science, 2014, vol. 346, p. 1510.

    Article  CAS  Google Scholar 

  103. Oh, D.H., Sano, M., and Boxer, S.G., Electroabsorption (Stark effect) spectroscopy of mono- and biruthenium charge-transfer complexes: measurements of changes in dipole moments and other electrooptic properties, J. Am. Chem. Soc., 1991, vol. 113, p. 6880.

    Article  CAS  Google Scholar 

  104. Cave, R.J. and Newton, M.D., Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements, Chem. Phys. Lett., 1996, vol. 249, p. 15.

    Article  CAS  Google Scholar 

  105. Hush, N.S., Discussion of “Electrode reactons of organic compounds: General Introduction” by R.A. Marcus, Discus. Faraday Soc., 1968, vol. 45, p. 52.

    Article  Google Scholar 

  106. Hammond, G.S., A correlation of reaction rates, J. Am. Chem. Soc., 1955, vol. 77, p. 334.

    Article  CAS  Google Scholar 

  107. Leffler, J.E., Parameters for the description of transition states, Science, 1953, vol. 117, p. 340.

    Article  CAS  Google Scholar 

  108. Toro-Labbe, A., Characterization of chemical reactions from the profiles of energy, chemical potential, and hardness, J. Phys. Chem. A, 1999, vol. 103, p. 4398.

    Article  CAS  Google Scholar 

  109. Toro-Labbe, A., Gutierrez-Oliva, S., Murray, J.S., and Politzer, P., A new perspective on chemical and physical processes: The reaction force, Mol. Phys., 2007, vol. 105, p. 2619.

    Article  CAS  Google Scholar 

  110. Toro-Labbe, A., Gutierrez-Oliva, S., Murray, J.S., and Politzer, P., The reaction force and the transition region of a reaction, J. Mol. Model., 2009, vol. 15, p. 707.

    Article  CAS  Google Scholar 

  111. Politzer, P., Reimers, J.R., Murray, J.S., and Toro-Labbe, A., Reaction force and its link to diabatic analysis: A unifying approach to analyzing chemical reactions, J. Phys. Chem. Lett., 2010, vol. 1, p. 2858.

    Article  CAS  Google Scholar 

  112. Kanchanawong, O., Dahlbom, M.G., Treynor, T.P., Reimers, J.R., Hush, N.S., and Boxer, S.G., Charge delocalization in the special pair radical cation of mutant reaction centers of rhodobacter sphaeroides from stark spectra and non-adiabatic spectral simulations, J. Phys. Chem. B, 2006, vol. 110, p. 18688.

    Article  CAS  Google Scholar 

  113. Reimers, J.R. and Hush, N.S., Understanding the observed Stark spectra, midpoint potential versus degree of charge localization, and intervalence transition energies of the special-pair radical cation of Rhodobacter sphaeroides and its mutant strains, J. Am. Chem. Soc., 2004, vol. 126, p. 4132.

    Article  CAS  Google Scholar 

  114. Reimers, J.R. and Hush, N.S., Electric field perturbation of electronic (vibronic) absorption envelopes: Application to characterization of mixed-valence states, in Mixed Valence Systems: Applications in Chemistry, Physics, and Biology, Prassides, K., Dordrecht: Kluwer Acad. Publishers, 1991, p. 29.

    Chapter  Google Scholar 

  115. Franzen, S., Lao, K., and Boxer, S.G., Electric field effects on kinetics of electron transfer reactions: Connection between experiment and theory, Chem. Phys. Lett., 1992, vol. 197, p. 380.

    Article  CAS  Google Scholar 

  116. Landau, L.D., Z. Phys. Sowjetunion, 1932, vol. 2, p. 46.

    CAS  Google Scholar 

  117. Landau, L.D., Z. Phys. Sowjetunion, 1932, vol. 1, p. 88.

    CAS  Google Scholar 

  118. London, F., Ueber den Mechanismus der homöopolaren Bindung, in Probleme der Modernen Physik, Sommerfeld, A. and Debye, P., Leipzig: Hirsel, 1928, p. 104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Reimers.

Additional information

This paper is the authors’ contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 9, pp. 1169–1182.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimers, J.R., Hush, N.S. The critical role of the transition-state cusp diameter in understanding adiabatic and non-adiabatic electron transfer. Russ J Electrochem 53, 1042–1053 (2017). https://doi.org/10.1134/S1023193517090105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517090105

Keywords

Navigation