Skip to main content
Log in

Allelic Combinations of Immune Response Genes and Risk of Development of Myocardial Infarction

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) is a multifactorial polygenic disease. It develops because of the complex interaction between many environmental and genetic factors. In this paper, we have studied associations of MI and allele combinations of 17 polymorphic markers of immune response genes in an ethnically homogeneous group of Tatars. The material for analysis was DNA samples of patients (286 men) with onset of MI at the age of 30 to 60 years and 301 essentially healthy men of the control group. Using the APSampler algorithm, we obtained allele combinations with the increased risk of MI in which allele variants CX3CR1*M (rs3732378), VCAM1*C (rs3917010), ICAM1*E (rs5498), LTA*A (rs909253), and TNFRSF1B*M (rs1061622) occurred the most often.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yusuf, S., Hawken, S., Ounpuu, S., et al., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study, Lancet, 2004, vol. 364, no. 9438, pp. 937–952. http://dx.doi.org/. doi 10.1016/S0140-6736(04)17018-9

    Article  PubMed  Google Scholar 

  2. Zdravkovic, S., Wienke, A., Pedersen, N.L., et al., Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins, J. Int. Med., 2002, vol. 252, no. 3, pp. 247–254. doi 10.1046/j.1365-2796.2002.01029.x

    Article  CAS  Google Scholar 

  3. Wienke, A., Holm, N.V., Skytthe, A., and Yashin, A., The heritability of mortality due to heart diseases: a correlated frailty model applied to Danish twins, Twin Res., 2001, vol. 4, no. 04, pp. 266–274. https://doi.org/10.1375/twin.4.4.266.

    Article  CAS  PubMed  Google Scholar 

  4. Schunkert, H., König, I.R., Kathiresan, S., et al., Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease, Nat. Genet., 2011, vol. 43, no. 4, pp. 333–338. doi 10.1038/ng.784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deloukas, P., Kanoni, S., Willenborg, C., et al., Largescale association analysis identifies new risk loci for coronary artery disease, Nat. Genet., 2013, vol. 45, no. 1, pp. 25–33. doi 10.1038/ng.2480

    Article  CAS  PubMed  Google Scholar 

  6. Hansson, G.K., Libby, P., and Tabas, I., Inflammation and plaque vulnerability, J. Intern. Med., 2015, vol. 278, no. 5, pp. 483–493. doi 10.1111/joim.12406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Nolan, C., Ed., New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  8. Nasibullin, T.R., Sadikova, R.I., Timasheva, Y.R., et al., Association between inflammatory gene polymorphisms and the risk of myocardial infarction, Russ. J. Genet., 2014, vol. 50, no. 2, pp. 211–217. doi 10.1134/S1022795414020112

    Article  CAS  Google Scholar 

  9. Nasibullin, T.R., Timasheva, Y.R., Tuktarova, I.A., et al., Combinations of cytokine gene network polymorphic markers as potential predictors of myocardial infarction, Russ. J. Genet., 2014, vol. 50, no. 9, pp. 987–993. doi 10.1134/S1022795414090099

    Article  CAS  Google Scholar 

  10. Nasibullin, T.R., Yagafarova, L.F., Yagafarov, I.R., et al., Combinations of polymorphic markers of chemokine genes, their receptors and acute phase protein genes as potential predictors of coronary heart diseases, Acta Nat., 2016, vol. 8, no. 1 (28), pp. 111–116.

    CAS  Google Scholar 

  11. Favorov, A.V., Andreewski, T.V., Sudomoina, M.A., et al., A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans, Genetics, 2005, vol. 171, no. 4, pp. 2113–2121. doi 10.1534/genetics.105.048090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Galkina, E. and Ley, K., Vascular adhesion molecules in atherosclerosis, Arterioscler., Thromb., Vasc. Biol., 2007, vol. 27, no. 11, pp. 2292–2301. https://doi.org/10.1161/ATVBAHA.107.149179.

    Article  CAS  Google Scholar 

  13. Nasibullin, T.R., Timasheva, Y.R., Sadikova, R.I., et al., Genotype/allelic combinations as potential predictors of myocardial infarction, Mol. Biol. Rep., 2016, vol. 43, no. 1, pp. 11–16. doi 10.1007/s11033-015-3933-3

    Article  CAS  PubMed  Google Scholar 

  14. Kretowski, A. and Kinalska, I., L-selectin gene T668C mutation in type 1 diabetes patients and their first degree relatives, Immunol. Lett., 2000, vol. 74, no. 3, pp. 225–228. https://doi.org/10.1016/S0165-2478(00)00259-5.

    Article  CAS  PubMed  Google Scholar 

  15. Rafiei, A., Hajilooi, M., Shakib, R.J., et al., Association between the Phe206Leu polymorphism of L-selectin and brucellosis, J. Med. Microbiol., 2006, vol. 55, no. 5, pp. 511–516. doi 10.1099/jmm.0.46383-0

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, D.H., Wang, Y., Hu, W., et al., SELP genetic polymorphisms may contribute to the pathogenesis of coronary heart disease and myocardial infarction: a meta-analysis, Mol. Biol. Rep., 2014, vol. 41, no. 5, pp. 3369–3380. doi 10.1007/s11033-014-3199-1

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, H., Yan, W., Tan, Y., et al., Adhesion molecule polymorphisms and pulse wave velocity in American youth, Twin Res. Hum. Genet., 2008, vol. 11, no. 5, pp. 517–523. https://doi.org/10.1375/twin.11.5.517.

    Article  PubMed  Google Scholar 

  18. Mathew, J.P., Podgoreanu, M.V., Grocott, H.P., et al., Genetic variants in P-selectin and C-reactive protein influence susceptibility to cognitive decline after cardiac surgery, J. Am. Coll. Cardiol., 2007, vol. 49, no. 19, pp. 1934–1942. https://doi.org/10.1016/j.jacc.2007. 01.080.

    Article  CAS  PubMed  Google Scholar 

  19. Chang, Y.P.C., Liu, X., Kim, J.D.O., et al., Multiple genes for essential-hypertension susceptibility on chromosome 1q, Am. J. Hum. Genet., 2007, vol. 80, no. 2, pp. 253–264. https://doi.org/10.1086/510918.

    Article  CAS  PubMed  Google Scholar 

  20. Oh, I.Y., Yoon, C.H., Hur, J., et al., Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle, Blood, 2007, vol. 110, no. 12, pp. 3891–3899. https://doi.org/10. 1182/blood-2006-10-048991.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Z.J., Tian, R., Li, Y., et al., SDF-1α-induced dual pairs of E-selectin/ligand mediate endothelial progenitor cell homing to critical ischemia, Sci. Rep., 2016, vol. 6. doi 10.1038/srep34416

  22. Sakowicz, A., Fendler, W., Lelonek, M., et al., Genetic polymorphisms and the risk of myocardial infarction in patients under 45 years of age, Biochem. Genet., 8, vol. 51, nos. 3–4, pp. 230–242. doi 10.1007/s10528-012-9558-5

  23. Reschner, H., Milutinovic, A., and Petrovič, D., The PECAM-1 gene polymorphism–a genetic marker of myocardial infarction, Cent. Eur. J. Biol., 2009, vol. 4, no. 4, pp. 515–520. https://doi.org/10.2478/s11535-009-0042-0.

    CAS  Google Scholar 

  24. Goodman, R.S., Kirton, C.M., Oostingh, G.J., et al., PECAM-1 polymorphism affects monocyte adhesion to endothelial cells, Transplantation, 2008, vol. 85, no. 3, pp. 471–477. doi 10.1097/TP.0b013e3181622d65

    Article  CAS  PubMed  Google Scholar 

  25. Bielinski, S.J., Reiner, A.P., Nickerson, D., et al., Polymorphisms in the ICAM1 gene predict circulating soluble intercellular adhesion molecule-1(sICAM-1), Atherosclerosis, 2011, vol. 216, no. 2, pp. 390–394. https://doi.org/10.1016/j.atherosclerosis.2011.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pare, G., Ridker, P.M., Rose, L., et al., Genome-wide association analysis of soluble ICAM-1 concentration reveals novel associations at the NFKBIK, PNPLA3, RELA, and SH2B3 loci, PLoS Genet., 2011, vol. 7, no. 4. e1001374. https://doi.org/10.1371/journal.pgen. 1001374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng, X., Tang, W., Wang, Y., et al., Intercellular adhesion molecule 1 rs5498A>G polymorphism is associated with coronary artery disease risk: a metaanalysis, Int. J. Clin. Exp. Med., 2016, vol. 9, no. 7, pp. 13773–13782.

    Google Scholar 

  28. Ghattas, A., Griffiths, H.R., Devitt, A., et al., Monocytes in coronary artery disease and atherosclerosis: where are we now?, J. Am. Coll. Cardiol., 2013, vol. 62, no. 17, pp. 1541–1551. https://doi.org/10.1016/j. jacc.2013.07.043.

    Article  CAS  PubMed  Google Scholar 

  29. Pham, M.H.T. and Bonello, G.B., The rs1024611 regulatory region polymorphism is associated with CCL2 allelic expression imbalance, PLoS One, 2012, vol. 7, no. 11. 7. doi 10.1371/journal.pone.0049498

    Google Scholar 

  30. Bai, X.Y., Li, S., Wang, M., et al., Association of monocyte chemoattractant protein-1 (MCP-1)-2518A>G polymorphism with susceptibility to coronary artery disease: a meta-analysis, Ann. Hum. Genet., 2015, vol. 79, no. 3, pp. 173–187. doi 10.1111/ahg.12105

    Article  CAS  PubMed  Google Scholar 

  31. Breunis, W.B., Biezeveld, M.H., Geissler, J., et al., Polymorphisms in chemokine receptor genes and susceptibility to Kawasaki disease, Clin. Exp. Immunol., 2007, vol. 150, no. 1, pp. 83–90. doi 10.1111/j.1365-2249.2007.03457.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McDermott, D.H., Fong, A.M., Yang, Q., et al., Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans, J. Clin. Invest., 2003, vol. 111, no. 8, pp. 1241–1250. doi 10.1172/JCI200316790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Debette, S., Bevan, S., Dartigues, J.F., et al., Fractalkine receptor/ligand genetic variants and carotid intima–media thickness, Stroke, 2009, vol. 40, no. 6, pp. 2212–2214. https://doi.org/10.1161/STROKEAHA. 108.537159.

    Article  CAS  PubMed  Google Scholar 

  34. Gómez-Díaz, R.A., Gutiérrez, J., Contreras-Rodriguez, A., et al., Association of V249I and T280M variants of fractalkine receptor CX3CR1 with carotid intima-media thickness in a Mexican population with type 2 diabetes, Gac. Med. Mex., 2017, vol. 153, pp. 49–56.

    PubMed  Google Scholar 

  35. Huber, S.A., Sakkinen, P., Conze, D., et al., Interleukin-6 exacerbates early atherosclerosis in mice, Arterioscler., Thromb., Vasc. Biol., 1999, vol. 19, no. 10, pp. 2364–2367. https://doi.org/10.1161/01.ATV.19.10.2364.

    Article  CAS  Google Scholar 

  36. Elhage, R., Clamens, S., Besnard, S., et al., Involvement of interleukin-6 in atherosclerosis but not in the prevention of fatty streak formation by 17β-estradiol in apolipoprotein E-deficient mice, Atherosclerosis, 2001, vol. 156, no. 2, pp. 315–320. https://doi.org/10.1016/S0021-9150(00)00682-1.

    Article  CAS  PubMed  Google Scholar 

  37. Schieffer, B., Selle, T., Hilfiker, A., et al., Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis, Circulation, 2004, vol. 110, no. 22, pp. 3493–3500. https://doi.org/10. 1161/01.CIR.0000148135.08582.97.

    Article  CAS  PubMed  Google Scholar 

  38. Fishman, D., Faulds, G., Jeffery, R., et al., The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis, J. Clin. Invest., 1998, vol. 102, no. 7, p. 1369. doi 10.1172/JCI2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sudomoina, M.A., Sukhinina, T.S., Barsova, R.M., et al., Complex analysis of association of inflammation genes with myocardial infarction, Mol. Biol. (Moscow), 2009, vol. 44, no. 3, pp. 463–471. doi 10.1134/S0026893310030088

    Google Scholar 

  40. Noss, E.H., Nguyen, H.N., Chang, S.K., et al., Genetic polymorphism directs IL-6 expression in fibroblasts but not selected other cell types, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 48, pp. 14948–14953. doi 10.1073/pnas.1520861112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toutouzas, K., Klettas, D., Anousakis-Vlachochristou, N., et al., The–174G>C interleukin-6 gene polymorphism is associated with angiographic progression of coronary artery disease over a 4-year period, Hell. J. Cardiol., 2017, vol. 58, pp. 80–86. http://dx.doi.org/. doi 10.1016/j.hjc.2017.02.002

    Article  Google Scholar 

  42. Han, X. and Boisvert, W.A., Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function, Thromb. Haemost., 2015, vol. 113, no. 3, pp. 505–512. http://dx.doi.org/. doi 10.1160/TH14-06-0509

    Article  PubMed  Google Scholar 

  43. Temple, S.E.L., Lim, E., Cheong, K.Y., et al., Alleles carried at positions −819 and −592 of the IL10 promoter affect transcription following stimulation of peripheral blood cells with Streptococcus pneumoniae, Immunogenetics, 2003, vol. 55, no. 9, pp. 629–632.

    Article  CAS  PubMed  Google Scholar 

  44. Torres-Poveda, K., Burguete-Garcia, A.I., Cruz, M., et al., The SNP at −592 of human IL-10 gene is associated with serum IL-10 levels and increased risk for human papillomavirus cervical lesion development, Infect. Agents Cancer, 2012, vol. 7, no. 1, p. 32. https://doi.org/10.1186/1750-9378-7-32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heiskanen, M., Kähönen, M., Hurme, M., et al., Polymorphism in the IL10 promoter region and early markers of atherosclerosis: the cardiovascular risk in young Finns study, Atherosclerosis, 2010, vol. 208, no. 1, pp. 190–196. https://doi.org/10.1016/j.atherosclerosis. 2009.06.032.

    Article  CAS  PubMed  Google Scholar 

  46. Fragoso, J. M., Vallejo, M., Alvarez-León, E., et al., Alleles and haplotypes of the interleukin 10 gene polymorphisms are associated with risk of developing acute coronary syndrome in Mexican patients, Cytokine, 2011, vol. 55, no. 1, pp. 29–33. https://doi.org/10.1016/j.cyto.2011.03.021.

    Article  CAS  PubMed  Google Scholar 

  47. Ohta, H., Wada, H., Niwa, T., et al., Disruption of tumor necrosis factor-α gene diminishes the development of atherosclerosis in ApoE-deficient mice, Atherosclerosis, 2005, vol. 180, no. 1, pp. 11–17. https://doi.org/10.1016/j.atherosclerosis.2004.11.016.

    Article  CAS  PubMed  Google Scholar 

  48. Schreyer, S.A., Vick, C.M., and LeBoeuf, R.C., Loss of lymphotoxin-α but not tumor necrosis factor-α reduces atherosclerosis in mice, J. Biol. Chem., 2002, vol. 277, no. 14, pp. 12364–12368. doi 10.1074/jbc.M111727200

    Article  CAS  PubMed  Google Scholar 

  49. Santos, M.J., Fernandes, D., Caetano-Lopes, J., et al., Lymphotoxin-α 252A>G polymorphism: a link between disease susceptibility and dyslipidemia in rheumatoid arthritis?, J. Rheumatol., 2011, vol. 38, no. 7, pp. 1244–1249. https://doi.org/10.3899/jrheum.101170.

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka, T. and Ozaki, K., Inflammation as a risk factor for myocardial infarction, J. Hum. Genet., 2006, vol. 51, pp. 595–604. doi 10.1007/s10038-006-0411-8

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Y., Zhao, J., Lau, W.B., et al., Tumor necrosis factor-α and lymphotoxin-α mediate myocardial ischemic injury via TNF receptor 1, but are cardioprotective when activating TNF receptor 2, PLoS One, 2013, vol. 8, no. 5. e60227. https://doi.org/10.1371/journal. pone.0060227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schreyer, S.A., Peschon, J.J., and LeBoeuf, R.C., Accelerated atherosclerosis in mice lacking tumor necrosis factor receptor p55, J. Biol. Chem., 1996, vol. 271, no. 42, pp. 26174–26178. doi 10.1074/jbc.271. 42.26174

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, L., Peppel, K., Sivashanmugam, P.O., et al., Expression of tumor necrosis factor receptor-1 in arterial wall cells promotes atherosclerosis, Arterioscler., Thromb., Vasc. Biol., 2007, vol. 27, no. 5, pp. 1087–1094. https://doi.org/10.1161/01.ATV.0000261548. 49790.63.

    Article  Google Scholar 

  54. Mavri, A., Bastelica, D., Poggi, M., et al., Polymorphism A36G of the tumor necrosis factor receptor 1 gene is associated with PAI-1 levels in obese women, Thromb. Haemost., 2007, vol. 97, no. 1, pp. 62–66. https://doi.org/10.1160/TH06-06-0314.

    CAS  PubMed  Google Scholar 

  55. Markoula, S., Chatzikyriakidou, A., Giannopoulos, S., et al., Association of TNF-857C>T, TNFRSF1A36A>G, and TNFRSF1B676T>G polymorphisms with ischemic stroke in a Greek population, Stroke Res. Treat., 2011, vol. 2011. http://dx.doi.org/. doi 10.4061/2011/920584

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Nasibullin.

Additional information

Original Russian Text © R.I. Sadikova, T.R. Nasibullin, Ya.R. Timasheva, I.A. Tuktarova, V.V. Erdman, M.Iu. Shein, I.E. Nikolaeva, O.E. Mustafina, 2018, published in Genetika, 2018, Vol. 54, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadikova, R.I., Nasibullin, T.R., Timasheva, Y.R. et al. Allelic Combinations of Immune Response Genes and Risk of Development of Myocardial Infarction. Russ J Genet 54, 472–481 (2018). https://doi.org/10.1134/S1022795418040130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418040130

Keywords

Navigation