Skip to main content
Log in

Cotransformation of aspen and birch with three T-DNA regions from two different replicons in one Agrobacterium tumefaciens strain

  • Molecular Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The cointegration rate into the aspen and birch genomes of foreign genes from a binary vector and a disarmed Ti plasmid pCBE21 carried by the same Agrobacterium tumefaciens strain was studied. The cotransformation rate for the genes within the Ti plasmid varied from 30 to 100%; while the transformation rate for the gene from TL region was twofold higher as compared with the TR region. On the average, the gene transfer from all three T-DNAs was recorded in 10.9% of the transgenic lines. For the vector pBI121, the cotransformation rates for the genes from both regions of pCBE21 T-DNA were higher as compared with the vector pGS. In addition, a concurrent transfer of the genes from the Ti plasmid TL and TR regions was recorded only after the transformation with the vector pBI121. These results can be used for constructing woody plants containing several genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. James, C., Global Status of Commercialized Biotech/GM Crops, no. 39 ISAAA Brief, Ithaca: ISAAA, 2008.

    Google Scholar 

  2. Lebedev, V.G., Skryabin, K.G., and Dolgov, S.V., Transgenic Pear Clonal Rootstocks Resistant to Herbicide “Basta”, Acta Hort., 2002, vol. 596, pp. 193–197.

    CAS  Google Scholar 

  3. Lyyra, S., Meagher, R.B., Kim, T., et al., Coupling Two Mercury Resistance Genes in Eastern Cottonwood Enhances the Processing of Organomercury, Plant Biotech. J., 2007, vol. 5, pp. 254–262.

    Article  CAS  Google Scholar 

  4. An, G., Watson, B.D., Stachel, S., et al., New Cloning Vehicles for Transformation of Higher Plants, EMBO J., 1985, vol. 4, pp. 277–284.

    CAS  PubMed  Google Scholar 

  5. Depicker, A., Herman, L., Jacobs, A., et al., Frequencies of Simultaneous Transformation with Different T-DNAs and Their Relevance to the Agrobacterium/Plant Cell Interaction, Mol. Gen. Genet., 1985, vol. 201, pp. 477–484.

    Article  CAS  Google Scholar 

  6. Chen, L., Marmey, P., Taylor, N.J., et al., Expression and Inheritance of Multiple Transgenes in Rice Plants, Nat. Biotech., 1998, vol. 16, pp. 1060–1065.

    Article  CAS  Google Scholar 

  7. McKnight, T.D., Lillis, M.T., and Simpson, R.B., Segregation of Genes Transferred to One Plant Cell from Two Separate Agrobacterium Strains, Plant. Mol. Biol., 1987, vol. 8, pp. 439–445.

    Article  CAS  Google Scholar 

  8. De Buck, S., Jacobs, A., Van Montagu, M., and Depicker, A., Agrobacterium tumefaciens Transformation and Cotransformation Frequencies of Arabidopsis thaliana Root Explants and Tobacco Protoplasts, Mol. Plant Microbe Inter., 1998, vol. 11, pp. 449–457.

    Article  Google Scholar 

  9. Radchuk, V.V., Thi Van, D., and Klocke, E., Multiple Gene Co-Integration in Arabidopsis thaliana Predominantly Occurs in the Same Genetic Locus after Simultaneous in planta Transformation with Distinct Agrobacterium tumefaciens Strains, Plant Sci., 2005, vol. 168, pp. 1515–1523.

    Article  CAS  Google Scholar 

  10. De Buck, S., Podevin, N., Nolf, J., et al., The T-DNA Integration Pattern in Arabidopsis Transformants Is Highly Determined by the Transformed Target Cell, Plant J., 2009, vol. 60, pp. 134–145.

    Article  PubMed  Google Scholar 

  11. Jacob, S.S. and Veluthambi, K., Generation of Selection Marker-Free Transgenic Plants by Co-Transformation of a Co-Integrate Vector T-DNA and a Binary Vector T-DNA in One Agrobacterium tumefaciens Strain, Plant Sci., 2002, vol. 163, pp. 801–806.

    Article  CAS  Google Scholar 

  12. Higgins, J.D., Newbury, H.J., Barbara, D.J., et al., The Production of Marker-Free Genetically Engineered Broccoli with Sense and Antisense ACC Synthase 1 and ACC Oxidases 1 and 2 to Extend Shelf Life, Mol. Breed., 2006, vol. 17, pp. 7–20.

    Article  CAS  Google Scholar 

  13. Komari, T., Hiei, Y., Saito, Y., et al., Vectors Carrying Two Separate T-DNAs for Co-Transformation of Higher Plants Mediated by Agrobacterium tumefaciens and Segregation of Transformants Free from Selection Markers, Plant J., 1996, vol. 10, pp. 165–174.

    Article  CAS  PubMed  Google Scholar 

  14. Breitler, J., Meynard, D., Boxtel, J., et al., A Novel Two T-DNA Binary Vector Allows Efficient Generation of Marker-Free Transgenic Plants in Three Elite Cultivars of Rice (Oryza sativa L.), Trans. Res., 2004, vol. 13, pp. 271–278.

    Article  CAS  Google Scholar 

  15. Li, L., Zhou, Y., Cheng, X., et al., Combinatorial Modification of Multiple Lignin Traits in Trees through Multigene Cotransformation, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 4939–4944.

    Article  CAS  PubMed  Google Scholar 

  16. Lloyd, G. and McCown, B., Commercially Feasible Micropropagation of Mountain Laurel, Kalmia latifolia, by Use of Shoot-Tip Culture, Proc. Int. Plant Prop. Soc., 1981, vol. 30, pp. 421–427.

    Google Scholar 

  17. Jefferson, R.A., Assaying Chimeric Genes in Plants: The GUS Fusion System, Plant Mol. Biol. Rep., 1987, vol. 5, pp. 387–405.

    Article  CAS  Google Scholar 

  18. Revenkova, E.V., Kraev, A.S. and Skryabin, K.G., Construction of a Disarmed Derivative of the Supervirulent Ti Plasmid pTiBo542, in Biotechnology and Molecular Biology, Moscow, 1993, pp. 67–76.

  19. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Culture, Phys. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  20. Rogers, S.O. and Bendich, A.J., Extraction of Total Cellular DNA from Plants, Algae and Fungi, Plant Mol. Biol. Manual, Gelvin, S.B. and Schilperoort, R.A., Eds., Kluwer, 1994, pp. 1–8.

  21. Sripriya, R., Raghupathy, V., and Veluthambi, K., Generation of Selectable Marker-Free Sheath Blight Resistant Transgenic Rice Plants by Efficient Co-Transformation of a Cointegrate Vector T-DNA and a Binary Vector T-DNA in One Agrobacterium tumefaciens Strain, Plant Cell Rep., 2008, vol. 27, pp. 1635–1644.

    Article  CAS  PubMed  Google Scholar 

  22. Ream, W., Production of a Mobile T-DNA by Agrobacterium tumefaciens, Agrobacterium: From Biology to Biotechnology, Tzfira, T., Citovsky, V., Eds., 2008, pp. 279–313.

  23. Gulina, I.V., Shul’ga, O.A., Mironov, V.N., et al., The Expression of Partly Modified d-Endotoxin Gene from B. thuringiensis var. tenebrionis in Potato Transgenic Plants, Mol. Biol., 1994, vol. 28, pp. 1166–1175.

    CAS  Google Scholar 

  24. Lebedev, V.G., Lavrova, N., Lunin, V.G., et al., Plant-Defensin Genes Introduction for Improvement of Pear Phytopathogene Resistance, Acta Hort., 2002, vol. 596, pp. 167–172.

    CAS  Google Scholar 

  25. Schestibratov, K.A. and Dolgov, S.V., Transgenic Strawberry Plants Expressing a Thaumatin II Gene Demonstrate Enhanced Resistance to Botrytis cinerea, Sci. Hort., 2005, vol. 106, pp. 177–189.

    Article  CAS  Google Scholar 

  26. Palanichelvam, K., Oger, P., Clough, S.J., et al., A Second T-Region of the Soybean-Supervirulent Chrysopine-Type Ti Plasmid pTiChry5, and Construction of a Fully Disarmed vir Helper Plasmid, Mol. Plant Microbe Inter., 2000, vol. 13, pp. 1081–1091.

    Article  CAS  Google Scholar 

  27. Ko, T.-S., Lee, S., Farrand, S.K., and Korban, S.S., A Partially Disarmed vir Helper Plasmid, pKYRT1, in Conjunction with 2.4-Dichlorophenoxyactic Acid Promotes Emergence of Regenerable Transgenic Somatic Embryos from Immature Cotyledons of Soybean, Planta, 2004, vol. 218, pp. 536–554.

    Article  CAS  PubMed  Google Scholar 

  28. Hooykaas, P.J.J. and Schilperoort, R.A., Agrobacterium and Plant Genetic Engineering, Plant. Mol. Biol., 1992, vol. 19, pp. 15–38.

    Article  CAS  PubMed  Google Scholar 

  29. McCormac, A.C., Fowler, M.R., Chen, D.-F., and Elliott, M.C., Efficient Co-Transformation of Nicotiana tabacum by Two Independent T-DNAs, the Effect of T-DNA Size and Implications for Genetic Separation, Trans. Res., 2001, vol. 10, pp. 143–155.

    Article  CAS  Google Scholar 

  30. Miller, M., Tagliani, L., Wang, N., et al., High Efficiency Transgene Segregation in Co-Trans-Formed Maize Plants Using an Agrobacterium tumefaciens 2 T-DNA Binary System, Trans. Res., 2002, vol. 11, pp. 381–396.

    Article  CAS  Google Scholar 

  31. Windels, P., De Buck, S., and Depicker, A., Agrobacterium tumefaciens-Mediated Transformation: Patterns of T-DNA Integration into the Host Genome, Agrobacterium: From Biology to Biotechnology, Tzfira, T. and Citovsky, V., Eds., 2008, pp. 441–481.

  32. Simpson, R.B., Spielmann, A., Margossian, L., and McKnight, T.D., A Disarmed Binary Vector from Agrobacterium tumefaciens Functions in Agrobacterium rhizogenes, Plant. Mol. Biol., 1986, vol. 6, pp. 403–415.

    Article  CAS  Google Scholar 

  33. Lebedev, V.G., Shestibratov, K.A., and Dolgov, S.V., Efficiency of Cointegration of Heterologous DNA Sequences from T-Area of Different Agrobacterial Replicons in Plant Nuclear Genome, Tezisy dokladov Otchetnoi konferentsii FIBKh RAN za 2001 g (Abstracts of Summary Conference of the Institute of Physiology and Biochemistry RAS 2001), Pushchino, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Schestibratov.

Additional information

Original Russian Text © V.G. Lebedev, K.A. Schestibratov, T.E. Shadrina, I.V. Bulatova, D.G. Abramochkin, A.I. Miroshnikov, 2010, published in Genetika, 2010, Vol. 46, No. 11, pp. 1458–1466.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, V.G., Schestibratov, K.A., Shadrina, T.E. et al. Cotransformation of aspen and birch with three T-DNA regions from two different replicons in one Agrobacterium tumefaciens strain. Russ J Genet 46, 1282–1289 (2010). https://doi.org/10.1134/S1022795410110025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795410110025

Keywords

Navigation