Skip to main content
Log in

Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal activity in rhizospheric bacterium pseudomonas chlororaphis 449

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 18 September 2009

Abstract

Strain Pseudomonas chlororaphis 449, an antagonist of a broad spectrum of phytopathogenic microorganisms isolated from the maize rhizosphere, was shown to produce three phenazine antibiotics: phenazine-1-carboxylic acid (PCA), 2-hydroxylphenazine-1-carboxylic acid (2-OH-PCA), and 2-hydroxylphenazine (2-OH-PHZ). Two Quorum Sensing (QS) systems of regulation were identified: Phz/R and CsaI/R. Genes phzI and csaI were cloned and sequenced. Cells of strain 449 synthesize at least three types of AHL: N-butanoyl-L-homoserine lactone (C4-AHL), N-hexanoyl-L-homoserine lactone (C6-AHL), and N-(3-oxo-hexanoyl)-L-homoserine lactone (30C6-AHL). Transposon mutagenesis was used to generate mutants of strain 449 deficient in synthesis of phenazines, which carried inactivated phzA and phzB genes of the phenazine operon and gene phzO. Mutations phzA and phzB caused a drastic reduction in the antagonistic activity of bacteria toward phytopathogenic fungi. Both mutants lost the ability to protect cucumber and leguminous plants against phytopathogenic fungi Rhizoctonia solani and Sclerotinia sclerotiorum. These results suggest a significant role of phenazines in the antagonistic activity of P. chlororaphis 449.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, M.B. and Bassler, B.L., Quorum Sensing in Bacteria, Annu. Rev. Microbiol., 2001, vol. 55, pp. 165–199.

    Article  CAS  PubMed  Google Scholar 

  2. Waters, C. and Bassler, B., Quorum Sensing: Cell-to-Cell Communication in Bacteria, Annu. Rev. Cell Dev. Biol., 2005, vol. 21, pp. 319–346.

    Article  CAS  PubMed  Google Scholar 

  3. Khmel, I.A. and Metlitskaya, A.Z., Quorum Sensing Regulation of Gene Expression: A Promising Target for Drugs against Bacterial Pathogenicity, Mol. Biol. (Moscow), 2006, vol. 40, pp. 195–210.

    Article  CAS  Google Scholar 

  4. Khmel, I.A., Quorum Sensing Regulation of Gene Expression: Fundamental and Applied Aspects and the Role in Bacterial Communication, Mikrobiologiya, 2006, vol. 75, pp. 457–464.

    CAS  Google Scholar 

  5. Venturi, V., Regulation of Quorum Sensing in Pseudomonas, FEMS Microbiol. Rev., 2006, vol. 30, pp. 274–291.

    Article  CAS  PubMed  Google Scholar 

  6. Thomashow, L.S. and Weller, D.M., Current Concepts in the Use of Introduced Bacteria for Biological Disease Control: Mechanisms and Antifungal Metabolites, Plant-Microbe Interactions, Stacy and Keen, Eds., vol. 1, 1995, pp. 187–235.

  7. Mavrodi, D.V., Ksenzenko, V.N., Bonsall, R.F., et al., A Seven-Gene Locus for Synthesis of Phenazine-1-Carboxylic Acid by Pseudomonas fluorescens 2–79, J. Bacteriol., 1998, vol. 180, pp. 2541–2548.

    CAS  PubMed  Google Scholar 

  8. Delaney, S., Mavrodi, D., Bonsall, R., and Thomashow, L., phzO, a Gene for Biosynthesis of 2-Hydroxylated Phenazine Compounds in Pseudomonas aureofaciens 30–84, J. Bacteriol., 2001, vol. 183, pp. 318–327.

    Article  CAS  PubMed  Google Scholar 

  9. Wood, D.W., Gong, F., Daykin, M.M., et al., N-Acyl-Homoserine Lactone-Mediated Regulation of Phenazine Gene Expression by Pseudomonas aureofaciens 30–84 in the Wheat Rhizosphere, J. Bacteriol., 1997, vol. 179, pp. 7663–7670.

    CAS  PubMed  Google Scholar 

  10. Zhang, Z. and Pierson III, L.S., A Second Quorum-Sensing System Regulates Cell Surface Properties but not Phenazine Antibiotic Production in Pseudomonas aureofaciens, Appl. Environ. Microbiol., 2001, vol. 67, pp. 4305–4315.

    Article  CAS  PubMed  Google Scholar 

  11. McClean, K.H., Winson, M.K., Fish, L., et al., Quorum Sensing in Chromobacterium violaceum: Exploitation of Violacein Production and Inhibition for the Detection of N-Acylhomoserine Lactones, Microbiology, 1997, vol. 143, pp. 3703–3711.

    Article  CAS  PubMed  Google Scholar 

  12. Shaw, P.D., Ping, G., Daly, S.L., et al., Detecting and Characterizing N-Acylhomoserine Lactone Signal Molecules by Thin-Layer Chromatography, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 6036–6041.

    Article  CAS  PubMed  Google Scholar 

  13. De Lorenzo, V. and Timmis, K.N., Analysis and Construction of Stable Phenotypes in Gram-Negative Bacteria with Tn5- and Tn10-Derived Minitransposons, Methods Enzymol., 1994, vol. 235, pp. 386–405.

    Article  CAS  PubMed  Google Scholar 

  14. Winson, M.R., Swift, S., Fish, L., et al., Construction and Analysis of luxCDABE-Based Plasmid Sensors for Investigating N-Acylhomoserine Lactone-Mediated Quorum Sensing, FEMS Microbiol. Lett., 1998, vol. 163, pp. 185–192.

    Article  CAS  PubMed  Google Scholar 

  15. Hoang, T., Karkhoff-Schweizer, R., Kutchma, A., and Schweizer, H., A Broad-Host-Range Flp-FRT Recombination System for Site-Specific Excision of Chromosomally-Located DNA Sequences, Application for Isolation of Unmarked Pseudomonas aeruginosa Mutants, Gene, 1998, vol. 212, pp. 77–86.

    Article  CAS  PubMed  Google Scholar 

  16. Dennis, J.J. and Zylstra, G.J., Plasposons: Modular Self-Cloning Minitransposon Derivatives for Rapid Genetic Analysis of Gram-Negative Bacterial Genomes, Appl. Environ. Microbiol., 1998, vol. 64, pp. 2710–2715.

    CAS  PubMed  Google Scholar 

  17. Vieira, J. and Messing, J., The pUC Plasmids, an M13mp7-Derived System for Insertion Mutagenesis and Sequencing with Synthetic Universal Primers, Gene, 1982, vol. 19, pp. 259–268.

    Article  CAS  PubMed  Google Scholar 

  18. Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor: Cold Spring Harbor Laboratories, 1972.

    Google Scholar 

  19. Schweizer, H., Allelic Exchange in Pseudomonas aeruginosa Using Novel ColE1-Type Vectors and a Family of Cassettes Containing a Portable oriT and the Counter-Selectable Bacillus subtilis sacB Marker, Mol. Microbiol., 1992, vol. 6, pp. 1195–1204.

    Article  CAS  PubMed  Google Scholar 

  20. Kamensky, M., Ovadis, M., Chet, I., and Chernin, L., Soil-Borne Strain IC14 of Serratia plymuthica with Multiple Mechanisms of Antifungal Activity Provides Biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum Diseases, Soil Biol. Biochem., 2003, vol. 35, pp. 323–331.

    Article  CAS  Google Scholar 

  21. Veselova, M., Kholmeckaya, M., Klein, S., et al., Production of N-Acylhomoserine Lactone Signal Molecules by Gram-Negative Soil-Borne and Plant-Associated Bacteria, Folia Microbiol., 2003, vol. 48, pp. 794–798.

    Article  CAS  Google Scholar 

  22. Pierson, L.S., Keppenne, V.D., and Wood, D.W., Phenazine Antibiotic Biosynthesis in Pseudomonas aureofaciens 30–84 Is Regulated by PhzR in Response to Cell Density, J. Bacteriol., 1994, vol. 176, pp. 3966–3974.

    CAS  PubMed  Google Scholar 

  23. Wood, D.W. and Pierson, L.S., III, The phzI Gene of Pseudomonas aureofaciens 30–84 Is Responsible for the Production of a Diffusible Signal Required for Phenazine Antibiotic Production, Gene, 1996, vol. 168, pp. 49–53.

    Article  CAS  PubMed  Google Scholar 

  24. Smirnov, V.V. and Kiprianova, E.A., Bakterii roda Pseudomonas (Bacteria of the Genus Pseudomonas), Kiev: Naukova Dumka, 1990.

    Google Scholar 

  25. Chin-A-Woeng T., Bloemberg G., Van der Bij A., et al. Biocontrol by Phenazine-1-Carboxamide Producing Bacterium Pseudomonas chlororaphis PCL1391 of Tomato Root Rot Caused by Fusarium oxysporum f. sp. radicis-lycopersic, Mol. Plant-Microb. Interact., 1998, vol. 11, pp. 1069–1077.

    Article  CAS  Google Scholar 

  26. Wei, J., Tsai, Y., Horng, Y., et al., A Mobile Quorum-Sensing System in Serratia marcescens, J. Bacteriol., 2006, vol. 188, pp. 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  27. Mazzola, M., Cook, R., Thomashow, L., et al., Contribution of Phenazine Antibiotic Biosynthesis to the Ecological Competence of Fluorescent Pseudomonads in Soil Habitats, Appl. Environ. Microbiol., 1992, vol. 58, pp. 2616–2624.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Khmel.

Additional information

Original Russian Text © M.A. Veselova, Sh. Klein, I.A. Bass, V.A. Lipasova, A.Z. Metlitskaya, M.I. Ovadis, L.S. Chernin, I.A. Khmel, 2008, published in Genetika, 2008, Vol. 44, No. 12, pp. 1617–1626.

An erratum to this article can be found at http://dx.doi.org/10.1134/S1022795409090178

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselova, M.A., Klein, S., Bass, I.A. et al. Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal activity in rhizospheric bacterium pseudomonas chlororaphis 449. Russ J Genet 44, 1400–1408 (2008). https://doi.org/10.1134/S102279540812003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279540812003X

Keywords

Navigation