Skip to main content
Log in

Impact of Bacillus subtilis Bacteria in Combination with Salicylic and Jasmonic Acids on Changing the Proteome of Potato Leaves when Infected by Phytophthora infestans (Mont.) De Bary and with a Moisture Deficit

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effect of Bacillus subtilis bacteria in combination with salicylic (SA) and jasmonic (JA) acids on changes in the proteome of potato leaves during infection with Phytophthora infestans (Mont.) de Bary and moisture deficit was studied. Plants grown from microtubers of the Rannyaya Roza variety were sprayed with a suspension of B. subtilis (108 cells/mL) and a mixture of bacteria with SA (10–6 M), JA (10–7 M), and SA + JA. The plants were infected with P. infestans (105 spores/mL) 3 days after treatment and cultivated under conditions of artificial soil drought by reducing watering. When the soil moisture reached 40 ± 5% of the total water capacity (7 days after infection), the plants were fixed in liquid nitrogen to isolate proteins and analyze them by two-dimensional electrophoresis and mass spectrometry. A decrease in the degree of infestation with P. infestans was shown when potato leaves were treated with B. subtilis in combination with SA and JA. The leaf proteome shows differences in the content of 14 proteins in the pI range from 4.0 to 9.0 with molecular masses from 30 to 125 kDa. The most significant changes in the spectrum of plant proteins were found in healthy plants treated with B. subtilis and in infected plants in the combination of B. subtilis with JA. Qualitative and quantitative changes were observed for proteins involved in the processes of respiration and hypersensitivity reactions (HSR), energy metabolism, synthesis of secondary metabolites, and protective proteins that affect plant resistance to abiotic and biotic stress. Proteomic analysis has identified important proteins involved in the mechanism of potato responses to treatment with B. subtilis and infection with P. infestans, although the exact functions of the identified proteins and their potential impact on potato plant resistance to P. infestans and moisture deficit remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Verma, P., Yadav, A.N., Kumar, V., Singh, D.P., and Saxena, A.K., Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement, in Plant-Microbe Interactions in Agro-Ecological Perspectives, Singh, D.P., Singh, H.B., and Prabha, R., Eds., Singapore: Springer-Verlag, 2017, p. 543.

    Google Scholar 

  2. Burton, W.G., Challenges for stress physiology in potato, Am. Potato J., 1981, vol. 58, p. 3.

    Article  Google Scholar 

  3. Coleman-Derr, D. and Tringe, S.G., Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance, Front. Microbiol., 2014, vol. 5, p. 283. https://doi.org/10.3389/fmicb.2014.00283

    Article  PubMed  PubMed Central  Google Scholar 

  4. Berg, G., Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture, Appl. Microbiol. Biotechnol., 2009, vol. 84, p. 11. https://doi.org/10.1007/s00253-009-2092-7

    Article  CAS  PubMed  Google Scholar 

  5. Burkhanova, G.F., Veselova, S.V., Sorokan, A.V., Blagova, D.K., Nuzhnaya, T.V., and Maksimov, I.V., Strains of Bacillus ssp. regulate wheat resistance to Septoria nodorum Berk, Appl. Biochem. Microbiol., 2017, vol. 53, p. 346. https://doi.org/10.18699/VJ19.561

    Article  CAS  Google Scholar 

  6. Chanda, B., Xia, Y., Mandal, M.K., Sekine, K.T., Gao, Q.M., and Selote, D., Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants, Nat. Genet., 2011, vol. 43, p. 421. https://doi.org/10.1038/ng.798

    Article  CAS  PubMed  Google Scholar 

  7. Kuznetsova, M.A., Kozlovskii, B.E., Beketova, M.P., Sokolova, E.A., Malyuchenko, O.P., Alekseev, Ya.I., Rogozina, E.V., and Khavkin, E.E., Phytopathological and molecular characteristics of Phytophthora infestans isolates collected from resistant and sensitive potato genotypes, Mikol. Fitopatol., 2016, vol. 50, p. 175.

    Google Scholar 

  8. Batool, T., Ali, S., Seleiman, M.F., Naveed, N.H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M.R., Alotaibi, M., Al-Ashkar, I., and Mubushar, M., Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities, Sci. Rep., 2020, vol. 10, p. 1. https://doi.org/10.1038/s41598-020-73489-z

    Article  CAS  Google Scholar 

  9. Vasyukova, N.I., Chalenko, G.I., Gerasimova, N.G., Valueva, T.A., and Ozeretskovskaya, O.L., Activation of elicitor defensive properties by systemic signal molecules during the interaction between potato and the late blight agent, Appl. Biochem. Microbiol., 2008, vol. 44, p. 213. https://doi.org/10.1007/s10438-008-2015-x

    Article  CAS  Google Scholar 

  10. Vincent, D., Wheatley, M., and Cramer, G., Optimization of protein extraction and solubilization for mature grape berry, Electrophoresis, 2006, vol. 27, p. 1853. https://doi.org/10.1002/elps.200500698

    Article  CAS  PubMed  Google Scholar 

  11. Fedina, E.O., Karimova, F.G., Tarchevsky, I.A., Toropygin, I.Y., and Khripach, V.A., Effect of epibrassinolide on tyrosine phosphorylation of the Calvin cycle enzymes, Russ. J. Plant Phys., 2008, vol. 55, p. 193. https://doi.org/10.1007/s11183-008-2005-0

    Article  CAS  Google Scholar 

  12. Suckau, D., Resemann, A., Schuerenberg, M., Hufnagel, P., Franzen, J., and Holle, A., A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics, Anal. Bioanal. Chem., 2003, vol. 376, p. 952. https://doi.org/10.1007/s00216-003-2057-0

    Article  CAS  PubMed  Google Scholar 

  13. Perkins, D.N., Pappin, D.J., Creasy, D.M., and Cottrell, J.S., Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, 1999, vol. 20, p. 3551. https://doi.org/10.1002/(SICI)1522-2683(19991201)20

    Article  CAS  PubMed  Google Scholar 

  14. Yarullina, L.G., Kasimova, R.I., Ibragimov, R.I., Akhatova, A.R., Umarov, I.A., and Maksimov, I.V., Qualitative and quantitative changes of potato tuber proteome under the influence of signal molecules and infection with Phytophthora infestans, Appl. Biochem. Microbiol., 2016, vol. 52, p. 71. https://doi.org/10.1134/S0003683816010154

    Article  CAS  Google Scholar 

  15. Maksimov, I.V., Sorokan, A.V., Chereoanova, E.A., Surina, O.B., Troshina, N.B., and Yarullina, L.G., Effects of salicylic and jasmonic acids on the components of pro/antioxidant system in potato plants infected with late blight, Russ. J. Plant Phys., 2011, vol. 52, p. 299. https://doi.org/10.1134/S1021443711010109

    Article  CAS  Google Scholar 

  16. Gervais, T., Creelman, A., Li, X., Bizimungu, B., De Koeyer, D., and Dahal, K., Potato response to drought stress: physiological and growth basis, Front. Plant Sci., 2021, vol. 12, p. 1360. https://doi.org/10.3389/fpls.2021.698060

    Article  Google Scholar 

  17. Máthé, C., Garda, T., Freytag, C., and M-Hamvas, M., The role of serine-threonine protein phosphatase PP2A in plant oxidative stress signaling—facts and hypotheses, Int. J. Mol. Sci., 2019, vol. 20, art. ID 3028. https://doi.org/10.3390/ijms20123028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Belhaj, K., Lin, B., and Mauch, F., The chloroplast protein RPH1 plays a role in the immune response of Arabidopsis to Phytophthora brassicae, Plant J., 2009, vol. 58, p. 278. https://doi.org/10.1111/j.1365-313X.2008.03779.x

    Article  CAS  Google Scholar 

  19. Zadražnik, T., Moen, A., and Šuštar-Vozlič, J., Chloroplast proteins involved in drought stress response in selected cultivars of common bean (Phaseolus vulgaris L.), 3Biotech, 2019, vol. 9, art. ID 331. https://doi.org/10.1007/s13205-019-1862-x

  20. Li, D., Feng, Y., Lu, Q., Yan, D., Liu, Z., and Zhang, X., Comparative proteomic analysis of plant–pathogen interactions in resistant and susceptible poplar ecotypes infected with Botryosphaeria dothidea, Phytopathology, 2019, vol. 109, p. 2009. https://doi.org/10.1094/PHYTO-12-18-0452-R

    Article  CAS  PubMed  Google Scholar 

  21. Ali, A., Goswami, S., Kumar, R.R., Singh, K., Singh, J.P., Kumar, A., Sakhrey, A., Ra, G.K., and Praveen, S., Wheat oxygen evolving enhancer protein: identification and characterization of Mn-binding metalloprotein of photosynthetic pathway involved in regulating photosytem II integrity and network of antioxidant enzymes under heat stress, Int. J. Curr. Microbiol. Appl. Sci., 2018, vol. 7, p. 177. https://doi.org/10.20546/ijcmas.2018.702.02

    Article  Google Scholar 

  22. Moreno, J.I., Martın, R., and Castresana, C., Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress, Plant J., 2005, vol. 41, p. 451. https://doi.org/10.1111/j.1365-313X.2004.02311.x

    Article  CAS  PubMed  Google Scholar 

  23. Fang, C., Zhang, P., and Li, L., Serine hydroxymethyltransferase localised in the endoplasmic reticulum plays a role in scavenging H2O2 to enhance rice chilling tolerance, BMC Plant Biol., 2020, vol. 20, art. ID 236. https://doi.org/10.1186/s12870-020-02446-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kandoth, P.K., Liu, S., Prenger, E., Ludwig, A., Lakhssassi, N., Heinz, R., Zhou, Z., Howland, A., Gunther, J., Eidson, S., Dhroso, A., LaFayette, P., Tucker, D., Johnson, S., Anderson, J., Alaswad, A., et al., Systematic mutagenesis of serine hydroxymethyltransferase reveals an essential role in nematode resistance, Plant Physiol., 2017, vol. 175, p. 1370. https://doi.org/10.1104/pp.17.00553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Durian, G., Rahikainen, M., Alegre, S., Brosché, M., and Kangasjärvi, S., Protein phosphatase 2A in the regulatory network underlying biotic stress resistance in plants, Front. Plant Sci., 2016, vol. 7, art. ID 812. https://doi.org/10.3389/fpls.2016.00812

    Article  PubMed  PubMed Central  Google Scholar 

  26. López-Calcagno, P.E., Fisk, S., Brown, K.L., Bull, S.E., South, P.F., and Raines, C.A., Overexpressing the H‑protein of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco plants, Plant Biotechnol. J., 2019, vol. 17, p. 141. https://doi.org/10.1111/pbi.12953

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, X., Li, M., Xu, Y., Ren, J., and Zeng, A.-P., Quantitative study of H protein lipoylation of the glycine cleavage system and a strategy to increase its activity by co-expression of LplA, J. Biol. Eng., 2019, vol. 13, art. ID 32. https://doi.org/10.1186/s13036-019-0164-5

    Article  PubMed  PubMed Central  Google Scholar 

  28. Engel, N., van den Daele, K., Kolukisaoglu, U., Morgenthal, K., Weckwerth, W., Parnik, T., Keerberg, O., and Bauwe, H., Deletion of glycine decarboxylase in Arabidopsis is lethal under nonphotorespiratory conditions, Plant Physiol., 2007, vol. 144, p. 1328. https://doi.org/10.1104/pp.107.099317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Palmieri, M.C., Lindermayr, C., Bauwe, H., Steinhauser, C., and Durner, J., Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation, Plant Physiol., 2010, vol. 152, p. 1514. https://doi.org/10.1104/pp.109.152579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Merewitz, E.B., Gianfagna, T., and Huang, B., Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis, J. Exp. Bot., 2011, vol. 62, p. 5311. https://doi.org/10.1093/jxb/err166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pu, Q., Liang, J., Shen, Q., Fu, J., Pu, Z., Liu, J., Wang, X., and Wang, Q., A wheat β-patchoulene synthase confers resistance against herbivory in transgenic Arabidopsis, Genes, 2019, vol. 10, art. ID 441. https://doi.org/10.3390/genes10060441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, G., Yang, M., and Fu, J., Identification and characterization of two sesquiterpene synthase genes involved in volatile-mediated defense in tea plant (Camellia sinensis), Plant Physiol. Biochem., 2020, vol. 155, p. 650. https://doi.org/10.1016/j.plaphy.2020.08.004

    Article  CAS  PubMed  Google Scholar 

  33. Dwivedi, V., Rao, S., Bomzan, D.P., Kumar, S.R., Shanmugam, P.V., Olsson, S.B., and Nagegowda, D.A., Functional characterization of a defense-responsive bulnesol/elemol synthase from potato, Physiol. Plant., 2021, vol. 171, p. 7. https://doi.org/10.1111/ppl.13199

    Article  CAS  PubMed  Google Scholar 

  34. Singh, B. and Sharma, R.A., Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications, 3Biotech, 2015, vol. 5, p. 129. https://doi.org/10.1007/s13205-014-0220-2

  35. Ye, J., Mao, D., Cheng, S., Zhang, X., Tan, J., Zheng, J., and Xu, F., Comparative transcriptome analysis reveals the potential stimulatory mechanism of terpene trilactone biosynthesis by exogenous salicylic acid in Ginkgo biloba, Ind. Crops Prod., 2020, vol. 145, art. ID 112104. https://doi.org/10.1016/j.indcrop.2020.112104

    Article  CAS  Google Scholar 

  36. Rixen, S., Havemeyer, A., Tyl-Bielicka, A., Pysniak, K., Gajewska, M., Kulecka, M., Ostrowski, J., Mikula, M., and Clement, B., Mitochondrial amidoxime-reducing component 2 (MARC2) has a significant role in N-reductive activity and energy metabolism, J. Biol. Chem., 2019, vol. 294, p. 17593. https://doi.org/10.1074/jbc.RA119.007606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Plitzko, B., Havemeyer, A., Kunze, T., and Clement, B., The pivotal role of the mitochondrial amidoxime reducing component 2 in protecting human cells against apoptotic effects of the base analog N 6-hydroxylaminopurine, Cell Biol., 2015, vol. 290, p. 10126. https://doi.org/10.1074/jbc.M115.640052

    Article  CAS  Google Scholar 

  38. Zhao, Q. and Liu, C., Chloroplast chaperonin: an intricate protein folding machine for photosynthesis, Front. Mol. Biosci., 2018, vol. 4, art. ID 98. https://doi.org/10.3389/fmolb.2017.00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsai, Y.C., Mueller-Cajar, O., Saschenbrecker, S., Hartl, F.U., and Hayer-Hartl, M., Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes, J. Biol. Chem., 2012, vol. 287, p. 20471. https://doi.org/10.1074/jbc.M112.365411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ranford, J.C. and Henderson, B., Chaperonins in disease: mechanisms, models, and treatments, Mol. Pathol., 2002, vol. 55, p. 209. https://doi.org/10.1136/mp.55.4.209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was partly carried out on the topic of the State Assignment (state registration number AAAA-A21-121011990120-7), with the financial support of the Russian Foundation for Basic Research and the Belarusian Republican Foundation for Basic Research within the framework of scientific project no. 20-516-00005, using the equipment of the Center for Collective using the “Human Proteome” (IBMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Yarullina.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any research involving humans or animals as research objects.

Additional information

Translated by M. Shulskaya

Abbreviations: JA—jasmonic acid; ISR—induced systemic resistance; SA—salicylic acid; SOD—superoxide dismutase; PGSB—plant growth stimulating bacteria; SAR—systemic acquired resistance; GCS—glycine cleavage system; GDC—glycine dehydrogenase (decarboxylating); mARK—mitochondrial amidoxime reducing component; OEEP—oxygen-evolving enhancer protein; RBOH—respiratory burst oxidase homologs; SHMT—serine hydroxymethyltransferase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarullina, L.G., Tsvetkov, V.O., Khabibullina, V.O. et al. Impact of Bacillus subtilis Bacteria in Combination with Salicylic and Jasmonic Acids on Changing the Proteome of Potato Leaves when Infected by Phytophthora infestans (Mont.) De Bary and with a Moisture Deficit. Russ J Plant Physiol 69, 81 (2022). https://doi.org/10.1134/S1021443722040215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722040215

Keywords:

Navigation