Skip to main content
Log in

Long Term Silicon Exposure Coordinately Downregulates Lipoxygenase Genes, Decreases Reactive Oxygen Species Level and Promotes Growth of Cucumber Plants in a Semi-Hydroponic Cultivation System

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Cucumber (Cucumis sativus L.) F1 cultivar hybrid ‘Dirigent’ was investigated for growth, photosynthetic pigment content and level of reactive oxygen species upon long term silicon Si treatment in a perlite based, semi-hydroponic growth system. Element analysis approved elevated Si content in the shoot of silicate treated plants. Increased shoot growth as well as higher chlorophyll and carotenoid contents of leaves indicated beneficial effects of silicate provision. Increased transcript level of all known silicon transporter genes was revealed in leaves and roots of Si treated plants by RT-PCR and RT-qPCR. Furthermore, decreased level of hydrogen peroxide and lipid peroxidation indicated lower oxidative stress level in silicated shoot tissues. Potentially contributing to decreased lipid peroxidation, coordinately downregulated transcription of all expressed lipoxygenase genes was observed in leaves. Results suggest that downregulation of lipoxygenases may contribute to the antioxidant effect of silicon provision in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mitani, N., Uptake system of silicon in different plant species, J. Exp. Bot., 2005, vol. 56, p. 1255.

    Article  CAS  Google Scholar 

  2. Epstein, E., The anomaly of silicon in plant biology, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, p. 11.

    Article  CAS  Google Scholar 

  3. Ma, J.F., Plant root responses to three abundant soil minerals: silicon, aluminum and iron, Crit. Rev. Plant Sci., 2005, vol. 24, p. 267.

    Article  CAS  Google Scholar 

  4. Hodson, M.J., White, P.J., Mead, A., and Broadley, M.R., Phylogenetic variation in the silicon composition of plants, Ann. Bot., 2005, vol. 96, p. 1027.

    Article  CAS  Google Scholar 

  5. Maurel, C., Boursiac, Y., Luu, D.-T., Santoni, V., Shahzad, Z., and Verdoucq, L., Aquaporins in plants, Physiol. Rev., 2015, vol. 95, p. 1321.

    Article  CAS  Google Scholar 

  6. Sun, H., Guo, J., Duan, Y., Zhang, T., Huo, H., and Gong, H., Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus, Physiol. Plant., 2016, vol. 59, p. 201.

    Google Scholar 

  7. Wang, H.S., Yu, C., Fan, P.P., Bao, B.F., Li, T., and Zhu, Z.J., Identification of two cucumber putative silicon transporter genes in Cucumis sativus, J. Plant Growth Regul., 2014, vol. 34, p. 332.

    Article  CAS  Google Scholar 

  8. Sun, H., Duan, Y., Qi, X., Zhang, L., Huo, H., and Gong, H., Isolation and functional characterization of CsLsi2, a cucumber silicon efflux transporter gene, Ann. Bot., 2018, vol. 122, p. 641.

    Article  CAS  Google Scholar 

  9. Zhu, Y. and Gong, H., Beneficial effects of silicon on salt and drought tolerance in plants, Agron. Sustainable Dev., 2013, vol. 34, p. 455.

    Article  Google Scholar 

  10. Liang, Y., Nikolic, M., Bélanger, R., Gong, H., and Song, A., Silicon in Agriculture: From Theory to Practice, Dordrecht: Springer-Verlag, 2015, p. 142.

    Book  Google Scholar 

  11. Mehrabanjoubani, P., Abdolzadeh, A., Sadeghipour, H.R., and Aghdasi, M., Silicon affects transcellular and apoplastic uptake of some nutrients in plants, Pedosphere, 2015, vol. 25, p. 192.

    Article  CAS  Google Scholar 

  12. Zhu, Z., Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.), Plant Sci., 2004, vol. 527, p. 533.

    Google Scholar 

  13. Viswanath, K.K., Varakumar, P., Pamuru, R.R., Basha, S.J., Mehta, S., and Rao, A.D., Plant lipoxygenases and their role in plant physiology, J. Plant Biol., 2020, vol. 63, p. 83.

    Article  CAS  Google Scholar 

  14. Yang, X.Y., Jiang, H.J. and Yu, H.J., The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.), Int. J. Mol. Sci., 2012, vol. 13, p. 2481.

    Article  CAS  Google Scholar 

  15. Millner, P.D. and Kitt, D.G., The Beltsville method for soilless production of vesicular-arbuscular mycorrhizal fungi, Mycorrhiza, 1992, vol. 2, p. 9.

    Article  Google Scholar 

  16. Arnon, D.I., Copper enzymes in isolated chloroplasts, Plant Physiol., 1949, vol. 24, p. 1.

    Article  CAS  Google Scholar 

  17. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts, Arch. Biochem. Biophys., 1968, vol. 125, p. 189.

    Article  CAS  Google Scholar 

  18. Wolff, S.P., Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides, Methods Enzymol., 1994, vol. 182, p. 189.

    Google Scholar 

  19. Holz, S., Kube, M., Bartoszewski, G., Huettel, B., and Büttner, C., Initial Studies on cucumber transcriptome analysis under silicon treatment, Silicon, 2015, vol. 11, p. 2365.

    Article  Google Scholar 

  20. Bookout, A.L. and Mangelsdorf, D.J., Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways, Nucl. Recept. Signaling, 2003, vol. 1, p. 1.

    Article  Google Scholar 

  21. Voogt, W. and Sonneveld, C., Silicon in horticultural crops grown in soilless culture, in Studies in Plant Science, Amsterdam: Elsevier, 2001, ch. 6, p. 115.

    Google Scholar 

  22. Wang, S., Liu P., Chen, D., Yin, L., Li, H., and Deng, X., Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber, Front. Plant Sci., 2015, vol. 6, p. 759.

    PubMed  PubMed Central  Google Scholar 

  23. Bailey-Serres, J. and Voesenek L.A.C.J., Flooding stress: acclimations and genetic diversity, Annu. Rev. Plant Biol., 2008, vol. 59, p. 313.

    Article  CAS  Google Scholar 

  24. Vercelli, M., Minuto, A., Minuto, G., Contartese, V., Devecchi, M., and Larcher, F., The effects of innovative silicon applications on growth and powdery mildew control in soilless-grown cucumber (Cucumis sativus L.) and zucchini (Cucurbita pepo L.), Acta Physiol. Plant, 2017, vol. 39, p. 129.

    Article  Google Scholar 

  25. Coskun, D., Deshmukh, R., Sonah, H., Menzies, J.G., Reynolds, O., Ma, J.F., Kronzucker, H.J., and Bélanger, R.R., The controversies of silicon’s role in plant biology, New Phytol., 2018, vol. 221, p. 67.

    Article  Google Scholar 

  26. Morard, P. and Silvestre, J., Plant injury due to oxygen deficiency in the root environment of soilless culture: a review, Plant Soil, 1996, vol. 184, p. 243.

    Article  CAS  Google Scholar 

  27. Viswanath, K.K., Varakumar, P., Pamuru, R.R., Basha, S.J., Mehta, S., and Rao, A.D., Plant lipoxygenases and their role in plant physiology, J. Plant Biol., 2020, vol. 63, p. 83.

    Article  CAS  Google Scholar 

  28. Gunes, A., Pilbeam, D.J., Inal, A., Bagci, E.G., and Coban, S., Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress, J. Plant Interact., 2007, vol. 2, p. 105.

    Article  CAS  Google Scholar 

  29. Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, V.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, p. 141.

    Article  CAS  Google Scholar 

  30. Prasad, A., Sedlářová, M., Kale, R. S., and Pospíšil, P., Lipoxygenase in singlet oxygen generation as a response to wounding: in vivo imaging in Arabidopsis thaliana, Sci. Rep., 2017, vol. 7, p. 9831.

    Article  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Innovation and Technology within the framework of the Thematic Excellence Program 2020, Institutional Excellence Sub-Program (project no. TKP2020-IKA-12) in the topic of water-related researches of Szent István University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bat-Erdene.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: BHT—butylated hydroxytoluene; HG—Hoagland; LOX—lipoxygenase; RT-qPCR—reverse transcriptase quantitative PCR; Si—silicon; TBARS—thiobarbituric acid reactive substances.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O. Bat-Erdene, Szegő, A., Gyöngyik, M. et al. Long Term Silicon Exposure Coordinately Downregulates Lipoxygenase Genes, Decreases Reactive Oxygen Species Level and Promotes Growth of Cucumber Plants in a Semi-Hydroponic Cultivation System. Russ J Plant Physiol 68, 941–947 (2021). https://doi.org/10.1134/S1021443721050022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721050022

Keywords:

Navigation