Skip to main content
Log in

Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of silicon oxide (SiO2) nanoparticles at concentrations of 50, 100, 200, 400, and 800 mg/L on Triticum aestivum L. seedlings were investigated. We showed that SiO2 nanoparticles, at concentrations higher 200 mg/L, had negative impacts on wheat seedlings. At these concentrations, SiO2 nanoparticles significantly decreased roots and shoots fresh weight, decreased roots and shoots dry weight, decreased amounts of chlorophyll a and b in leaves, decreased amount of carotenoids in leaves, increased proline content in leaves, increased lipid peroxidation in leaves, and increased catalase activity in leaves. Results of this study indicate that at lower concentrations (such as 50 and 100 mg/L), SiO2 nanoparticles not only have negative effects on wheat seedlings, but can have even some positive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CAT:

catalase

TBA:

thiobarbituric acid

References

  1. Ma, J.F. and Yamaji, N., Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses, Soil Sci. Plant Nutr., 2004, vol. 50, pp. 11–18.

    Article  CAS  Google Scholar 

  2. Liang, Y., Sun, W., Zhu, Y.G., and Christie, P., Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review, Environ. Pollut., 2007, vol. 147, pp. 422–428.

    Article  CAS  PubMed  Google Scholar 

  3. Reynolds, O.L., Keeping, M.G., and Meyer, J.H., Silicon-augmented resistance of plants to herbivorous insects: a review, Ann. Appl. Biol., 2009, vol. 155, pp. 171–186.

    Article  CAS  Google Scholar 

  4. Geiger, F.M., Second harmonic generation, sum frequency generation, and (3): dissecting environmental interfaces with a nonlinear optical Swiss Army knife, Ann. Rev. Phys. Chem., 2009, vol. 60, pp. 61–83.

    Article  CAS  Google Scholar 

  5. Microbes and Microbial Technology: Agricultural and Environmental Applications, Ahmad, I., Ahmad, F., and Pichtel, J., Eds., New York: Springer-Verlag, 2011.

  6. Karimi, J. and Mohsenzadeh, S., Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe vera, Synth. React. Inorg., Met.Org., Nano-Met. Chem., 2015, vol. 45, no. 6, pp. 895–898.

    Article  CAS  Google Scholar 

  7. Whitesides, G.M., Nanoscience, nanotechnology, and chemistry, Small., 2005, vol. 1, pp. 172–179.

    Article  CAS  PubMed  Google Scholar 

  8. Miralles, P., Church, T.L., and Harris, A.T., Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants, Environ. Science Technol., 2012, vol. 46, pp. 9224–9239.

    Article  CAS  Google Scholar 

  9. Azimi, R., Borzelabad, M.J., Feizi, H., and Azimi, A., Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.), Pol. J. Chem. Technol.., 2014, vol. 16, pp. 25–29.

    Article  CAS  Google Scholar 

  10. Siddiqui, M.H., Al-Whaibi, M.H., Faisal, M., and Al Sahli, A.A., Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L., Environ. Toxicol. Chem.., 2014, vol. 33, pp. 2429–2437.

    Article  CAS  PubMed  Google Scholar 

  11. Sabaghnia, N. and Janmohammadi, M., Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes, Ann. UMCS, Biol., 2015, vol. 69, pp. 39–55.

    Google Scholar 

  12. Batley, G.E., Kirby, J.K., and McLaughlin, M.J., Fate and risks of nanomaterials in aquatic and terrestrial environments, Acc. Chem. Res., 2012, vol. 46, pp. 854–862.

    Article  PubMed  Google Scholar 

  13. Wellburn, A. and Lichtenthaler, H., Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents, in Advances in Photosyntsesis, Adv. Agric. Biotechnol., Sybesma, C. Ed., New York: Springer-Verlag., 1984, vol. 2, pp. 9–12.

    CAS  Google Scholar 

  14. Bates, L., Waldren, R., and Teare, I., Rapid determination of free proline for water-stress studies, Plant Soil., 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  15. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Y.S., Ding, M.D., Pang, Y., Gu, X.G., Gao, L.P., and Xia, T., Analysis of interfering substances in the measurement of malondialdehyde content in plant leaves, Asian J. Chem., 2013, vol. 25, pp. 6293–6297.

    CAS  Google Scholar 

  17. Nair, V. and Turner, G.A., The thiobarbituric acid test for lipid peroxidation: structure of the adduct with malondialdehyde, Lipids., 1984, vol. 19, pp. 804–805.

    Article  CAS  Google Scholar 

  18. Romero-Aranda, M.R., Jurado, O., and Cuartero, J., Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status, J. Plant Physiol., 2006, vol. 163, pp. 847–855.

    Article  CAS  PubMed  Google Scholar 

  19. Tahir, M.A., Rahmatullah, A., Aziz, T., and Ashraf, M., Wheat genotypes differed significantly in their response to silicon nutrition under salinity stress, J. Plant Nutr., 2010, vol. 33, pp. 1658–1671.

    Article  CAS  Google Scholar 

  20. Liu, Y., Zhang, Z., Zhang, Q., Baker, G.L., and Worden, R.M., Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane, Biochim. Biophys. Acta, Biomembr., 2014, vol. 1838, pp. 429–437.

    Article  CAS  Google Scholar 

  21. Rad, J.S., Karimi, J., Mohsenzadeh, S., Rad, M.S., and Moradgholi, J., Evaluating SiO2 nanoparticles effects on developmental characteristic and photosynthetic pigment contents of Zea mays L., Bull. Environ. Pharmacol. Life Sci.., 2014, vol. 3, pp. 194–201.

    Google Scholar 

  22. Ashraf, M. and Foolad, M., Roles of glycine betaine and proline in improving plant abiotic stress resistance, Environ. Exp. Bot., 2007, vol. 59, pp. 206–216.

    Article  CAS  Google Scholar 

  23. Mak, I.T. and Weglicki, W.B., Protection by betablocking agents against free radical-mediated sarcolemmal lipid peroxidation, Circ. Res., 1988, vol. 63, pp. 262–266.

    Article  CAS  PubMed  Google Scholar 

  24. Dexter, D., Carter, C., Wells, F., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., and Marsden, C.D., Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease, J. Neurochem., 1989, vol. 52, pp. 381–389.

    Article  CAS  PubMed  Google Scholar 

  25. Slomberg, D.L. and Schoenfisch, M.H., Silica nanoparticle phytotoxicity to Arabidopsis thaliana, Environ. Sci. Technol., 2012, vol. 46, pp. 10 247–10 254.

  26. Wang, Y. and Zhang, H., Comprehensive studies on the nature of interaction between catalase and SiO2 nanoparticle, Mater. Res. Bull., 2014, vol. 60, pp. 51–56.

    Article  CAS  Google Scholar 

  27. Yang, X., Cai, Z., Ye, Z., Chen, S., Yang, Y., Wang, H., Liu, Y., and Cao, A., In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes, Nanoscale., 2012, vol. 4, pp. 414–416.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Karimi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, J., Mohsenzadeh, S. Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63, 119–123 (2016). https://doi.org/10.1134/S1021443716010106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716010106

Keywords

Navigation