Skip to main content
Log in

Analysis of salicylic acid in willow barks and branches by an electrochemical method

  • Methods
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

An electrochemical method for measuring free salicylic acid (SA) was optimized and used to detect its content in barks and branches of thirteen Salix species. We utilized square wave voltammetry method in combination with pencil lead, the detection limit of which was 1.7 ng/ml of salicylic acid. The highest contents of free SA were observed in the bark of S. laponum (3.0 mg/g fr wt) and in the branches of S. purpurea, cv. Nana (2.1 mg/g fr wt) and S. planifolia (2.2 mg/g fr wt). The technique utilized for determination of SA in willow tissues has a much broader dynamic range and lower limit of detection in comparison to both linear sweep and cyclic voltammetry because of its efficient discrimination of capacitance current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CV:

cyclic voltammetry

SA:

salicylic acid

SWV:

square wave voltammetry

References

  1. Shah, J., The Salicylic Acid Loop in Plant Defense, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 365–371.

    Article  PubMed  CAS  Google Scholar 

  2. Panina, Y.S., Gerasimova, N.G., Chalenko, G.I., Vasyukova, N.I., and Ozeretskovskaya, O.L., Salicylic Acid and Phenylalanine Ammonia-Lyase in Potato Plants Infected with the Causal Agent of Late Blight, Russ. J. Plant Physiol., 2005, vol. 52, pp. 511–515.

    Article  CAS  Google Scholar 

  3. Ryabushkina, N.A., Synergism of Metabolite Action in Plant Responses to Stresses, Russ. J. Plant Physiol., 2005, vol. 52, pp. 547–552.

    Article  CAS  Google Scholar 

  4. Wang, L.J., Huang, W.D., Liu, Y.P., and Zhan, J.C., Changes in Salicylic and Abscisic Acid Contents during Heat Treatment and Their Effect on Thermotolerance of Grape Plants, Russ. J. Plant Physiol., 2005, vol. 52, pp. 516–520.

    Article  CAS  Google Scholar 

  5. Raskin, I., Role of Salicylic Acid in Plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992, vol. 43, pp. 439–463.

    Article  CAS  Google Scholar 

  6. Engelberth, J., Schmelz, E.A., Alborn, H.T., Cardoza, Y.J., Huang, J., and Tumlinson, J.H., Simultaneous Quantification of Jasmonic Acid and Salicylic Acid in Plants by Vapor-Phase Extraction and Gas Chromatography-Chemical Ionization-Mass Spectrometry, Anal. Biochem., 2003, vol. 312, pp. 242–250.

    Article  PubMed  CAS  Google Scholar 

  7. Scott, I.M. and Yamamoto, H., Mass Spectrometric Quantification of Salicylic Acid in Plant Tissues, Phytochemistry, 1994, vol. 37, pp. 335–336.

    Article  CAS  Google Scholar 

  8. Wilbert, S.M., Ericsson, L.H., and Gordon, M.P., Quantification of Jasmonic Acid, Methyl Jasmonate, and Salicylic Acid in Plants by Capillary Liquid Chromatography Electrospray Tandem Mass Spectrometry, Anal. Biochem., 1998, vol. 257, pp. 186–194.

    Article  PubMed  CAS  Google Scholar 

  9. Deng, C.H., Zhang, X.M., Zhang, J., Qian, J., and Zhu, W.M., Rapid Determination of Salicylic Acid in Plant Materials by Gas Chromatography-Mass Spectrometry, Chromatografia, 2003, vol. 58, pp. 225–229.

    CAS  Google Scholar 

  10. Wang, J., Deo, R.P., and Musameh, M., Stable and Sensitive Electrochemical Detection of Phenolic Compounds at Carbon Nanotube Modified Glassy Carbon Electrodes, Electroanalysis, 2003, vol. 15, pp. 1830–1834.

    Article  CAS  Google Scholar 

  11. Montilla, F., Michaud, P.A., Morallon, E., Vazquez, J.L., and Comninellis, C., Electrochemical Oxidation of Benzoic Acid at Boron-Doped Diamond Electrodes, Electrochim. Acta, 2002, vol. 47, pp. 3509–3513.

    Article  CAS  Google Scholar 

  12. Torriero, A.A.J., Luco, J.M., Sereno, L., and Raba, J., Voltammetric Determination of Salicylic Acid in Pharmaceuticals Formulations of Acetylsalicylic Acid, Talanta, 2004, vol. 62, pp. 247–254.

    Article  CAS  PubMed  Google Scholar 

  13. Xu, J.R. and Zhuang, X.R., Poly-Salicylic Acid Modified Glassy-Carbon Electrode and Its Application, Talanta, 1991, vol. 38, pp. 1191–1195.

    Article  CAS  PubMed  Google Scholar 

  14. Evans, D., Hart, J.P., and Rees, G., Voltammetric Behavior of Salicylic Acid at a Glassy-Carbon Electrode and Its Determination in Serum Using Liquid-Chromatography with Amperometric Detection, Analyst, 1991, vol. 116, pp. 803–806.

    Article  PubMed  CAS  Google Scholar 

  15. Fung, Y.S. and Luk, S.F., Determination of Salicylic Acid in Pharmaceutical Formulations and Foods by Differential-Pulse Voltammetry Using a Glassy-Carbon Electrode, Analyst, 1989, vol. 114, pp. 943–945.

    Article  CAS  Google Scholar 

  16. Kizek, R., Masarik, M., Kramer, K.J., Potesil, D., Bailey, M., Howard, J.A., Klejdus, B., Mikelova, R., Adam, V., Trnkova, L., and Jelen, F., An Analysis of Avidin, Biotin and Their Interaction at Atomole Levels by Voltammetric and Chromatographic Techniques, Anal. Bioanal. Chem., 2005, vol. 381, pp. 1167–1178.

    Article  PubMed  CAS  Google Scholar 

  17. Masarik, M., Kizek, R., Kramer, K.J., Billova, S., Brazdova, M., Vacek, J., Bailey, M., Jelen, F., and Howard, J.A., Application of Avidin-Biotin Technology and Adsorptive Transfer Stripping Square-Wave Voltammetry for Detection of DNA Hybridization and Avidin in Transgenic Avidin Maize, Anal. Chem., 2003, vol. 75, pp. 2663–2669.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, J., Kawde, A.N., and Sahlin, E., Renewable Pencil Electrodes for Highly Sensitive Stripping Potentiometric Measurements of DNA and RNA, Analyst, 2000, vol. 125, pp. 5–7.

    Article  PubMed  CAS  Google Scholar 

  19. Ozsoz, M., Erdem, A., Kara, P., Kerman, K., and Ozkan, D., Electrochemical Biosensor for the Detection of Interaction between Arsenic Trioxide and DNA Based on Guanine Signal, Electroanalysis, 2003, vol. 15, pp. 613–619.

    Article  CAS  Google Scholar 

  20. Fojta, M., Havran, L., Billova, S., Kostecka, P., Masarik, M., and Kizek, R., Two-Surface Strategy in Electrochemical DNA Hybridization Assays: Detection of Osmium-Labeled Target DNA at Carbon Electrodes, Electroanalysis, 2003, vol. 15, pp. 431–440.

    Article  CAS  Google Scholar 

  21. Causon, R., Validation of Chromatographic Methods in Biomedical Analysis—Viewpoint and Discussion, J. Chromatogr., B, 1997, vol. 689, pp. 175–180.

    Article  CAS  Google Scholar 

  22. Kizek, R., Vacek, J., Trnkova, L., and Jelen, F., Cyclic Voltammetry Study of the Redox System of Glutathione Using the Disulfide Bond Reducant Tris(2-Carboxyethyl)phosphine, Bioelectrochemistry, 2004, vol. 63, pp. 19–24.

    Article  PubMed  CAS  Google Scholar 

  23. Vitecek, J., Petrlova, J., Petrek, J., Adam, V., Potesil, D., Havel, J., Mikelova, R., Trnkova, L., and Kizek, R., Electrochemical Study of S-Nitrosoglutathione and Nitric Oxide by Carbon Fibre NO Sensor and Cyclic Voltammetry—Possible Way of Monitoring of Nitric Oxide, Electrochim. Acta, 2006, vol. 51, pp. 5087–5094.

    Article  CAS  Google Scholar 

  24. Klejdus, B., Kizek, R., Vacek, J., Zehnalek, J., Trnkova, L., and Kuban, V., Determination of Isoflavones in Soybean Food and Human Urine Using High-Performance Liquid Chromatography with Electrochemical Detection, J. Chromatogr., B: Biomed. Appl., 2004, vol. 806, pp. 101–111.

    Article  CAS  Google Scholar 

  25. Stone, E., An Account of the Success of the Bark of the Willow Tree in the Cure of Agues, Philos. Trans. R. Soc. L., 1963, vol. 53, pp. 195–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 623–628.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrek, J., Havel, L., Petrlova, J. et al. Analysis of salicylic acid in willow barks and branches by an electrochemical method. Russ J Plant Physiol 54, 553–558 (2007). https://doi.org/10.1134/S1021443707040188

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707040188

Key words

Navigation