Skip to main content
Log in

Cellulose composite membranes for nanofiltration of aprotic solvents

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Cellulose composite membranes have been fabricated by casting a cellulose solution in N-methylmorpholine oxide on a nonwoven polyester support. The membranes have been tested for nanofiltration of aprotic solvents. The solvent permeability has changed from 0.11 ± 0.02 to 2.5 ± 0.4 kg/(m2 h bar) in the following order: DMSO > NMP > DMFA > THF > acetone, which can be attributed to a decrease in viscosity of the fluids. The rejection of the anionic dyes Orange II (MW 350) and Remazol Brilliant Blue R (MW 626) has been found to range within 15–85% and 42–94%, respectively, on the solvent nature. Sorption experiments have revealed a noticeable difference between certain solvents in interaction with the membrane material: a lower degree of cellulose swelling in THF (37%) and a higher degree in DMSO (230%). In addition, it has been found that the rejection of solutes by the composite membranes correlates with the degree of cellulose swelling. A rejection of ≥90% has been achieved for Remazol Brilliant Blue R, which has the larger molecule, at a cellulose swelling ratio of 100% or higher. Thus, it has been concluded that polymer swelling leads to narrowing the porous structure of the cellulose layer of the composite membrane and, hence, improvement in separation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. M. Tsar’kov, A. A. Yushkin, and A. V. Volkov, Membranes and Membrane Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013), p. 539 [in Russian].

    Google Scholar 

  2. V. V. Parashchuk and A. V. Volkov, Ser. Krit. Tekhnol.: Membr. 37 (1), (2008).

    Google Scholar 

  3. Y. H. See Toh, M. Silva, and A. G. Livingston, J. Membr. Sci. 324, 220 (2008).

    Article  CAS  Google Scholar 

  4. I. Soroko, M. P. Lopes, and A. G. Livingston, J. Membr. Sci. 381, 152 (2011).

    Article  CAS  Google Scholar 

  5. I. Soroko, M. Makowski, F. Spill, and A. G. Livingston, J. Membr. Sci. 381, 163 (2011).

    Article  CAS  Google Scholar 

  6. I. Soroko, M. Sairam, and A. G. Livingston, J. Membr. Sci. 381, 172 (2011).

    Article  CAS  Google Scholar 

  7. Y. H. See Toh, F. W. Lim, and A. G. Livingston, J. Membr. Sci. 301, 3 (2007).

    Article  Google Scholar 

  8. K. Hendrix, G. Koeckelberghs, and I. F. J. Vankelecom, J. Membr. Sci. 452, 241 (2014).

    Article  CAS  Google Scholar 

  9. J. da Silva Burgal, L. G. Peeva, and A. Livingston, in Proceedings of the 10th International Congress on Membranes and Membrane Processes, 2014.

    Google Scholar 

  10. P. Vandezande, K. Vanherck, and I. F. J. Vankelecom, US Patent No. 2010 181 253 (2008).

    Google Scholar 

  11. K. Vanherck, A. Cano-Odena, G. Koeckelberghs, et al., J. Membr. Sci. 353, 135 (2010).

    Article  CAS  Google Scholar 

  12. H. Siddique, Y. Bhole, L. G. Peeva, and A. G. Livingston, J. Membr. Sci. 465, 138 (2014).

    Article  CAS  Google Scholar 

  13. C. Linder, M. Nemas, M. Perry, and R. Ketraro, US Patent No. 5 032 282 (1991).

    Google Scholar 

  14. M. Sairam, X. X. Loh, Y. Bhole, et al., J. Membr. Sci. 349, 123 (2010).

    Article  CAS  Google Scholar 

  15. X. X. Loh, M. Sairam, A. Bismarck, et al., J. Membr. Sci. 326, 635 (2009).

    Article  CAS  Google Scholar 

  16. P. Vandezande, L. E. M. Gevers, and I. F. Vankelecom, J. Chem. Soc. Rev. 37, 365 (2008).

    Article  CAS  Google Scholar 

  17. X. Li, P. Vandezande, and I. F. J. Vankelecom, J. Membr. Sci. 320, 143 (2008).

    Article  CAS  Google Scholar 

  18. X. Li, M. Basko, F. du Prez, and I. F. J. Vankelecom, J. Phys. Chem. B 112, 16539.

  19. A. Pinkert, K. N. Marsh, S. Pang, and M. P. Staiger, Chem. Rev. 109, 6712 (2009).

    Article  CAS  Google Scholar 

  20. A. A. Yushkin, T. S. Anokhina, and A. V. Volkov, Membr. Membr. Tekhnol. 5, 226 (2015).

    Google Scholar 

  21. T. S. Anokhina, A. A. Yushkin, V. V. Volkov, et al., Phys. Procedia 72, 171 (2015).

    Article  CAS  Google Scholar 

  22. T. Nishino, I. Matsuda, and K. Hirao, Macromolecules 37, 7683 (2004).

    Article  CAS  Google Scholar 

  23. S. L. Williamson, R. S. Armentrout, R. S. Porter, and C. L. McCormick, Macromolecules 31, 8134 (1998).

    Article  CAS  Google Scholar 

  24. K. J. Edgar, K. M. Arnold, W. W. Blount, J. E. Lawniczak, D. W. Lowman, Macromolecules 28, 4122 (1995).

    Article  CAS  Google Scholar 

  25. J. F. Masson and R. S. J. Manley, Macromolecules 24, 5914 (1991).

    Article  CAS  Google Scholar 

  26. J. F. Masson and R. S. J. Manley, Macromolecules 24, 6670 (1991).

    Article  CAS  Google Scholar 

  27. V. V. Vinogradov, O. P. Akaev, and L. N. Mizerovskii, Fibre Chem. 34, 167 (2002).

    Article  CAS  Google Scholar 

  28. L. N. Mizerovskii and V. V. Afanas’eva, Khim. Volokna, No. 5, 20 (2002).

    Google Scholar 

  29. Y. H. Bang, S. Lee, J. B. Park, and H. H. Cho, J. Appl. Polym. Sci. 73, 2681 (1999).

    Article  CAS  Google Scholar 

  30. A. Yoshihiko and M. Akira, J. Appl. Polym. Sci. 84, 2302 (2002).

    Article  Google Scholar 

  31. Z. Lewandowski, J. Appl. Polym. Sci. 83, 2762 (2002).

    Article  CAS  Google Scholar 

  32. H. J. Li, T. M. Cao, J. J. Qin, et al., J. Membr. Sci. 279, 328 (2006).

    Article  CAS  Google Scholar 

  33. Z. Mao, Y. Cao, X. Jie, et al., Sep. Purif. Technol. 72, 28 (2010).

    Article  CAS  Google Scholar 

  34. Y. Zhang, H. Shao, and X. Hu, J. Appl. Polym. Sci. 86, 3389 (2002).

    Article  CAS  Google Scholar 

  35. L. K. Golova, V. V. Romanov, and O. B. Balashova, RU Patent No. 1 645 308 (1992).

    Google Scholar 

  36. L. K. Golova, Khim. Volokna, No. 1, 13 (1996).

    Google Scholar 

  37. L. K. Golova, V. G. Kulichikhin, and S. P. Papkov, Vysokomol. Soedin., Ser. A 28, 1795 (1986).

    CAS  Google Scholar 

  38. L. K. Golova, O. E. Borodina, L. K. Kuznetsova, T. A. Lyubova, T. B. Krylova, Khim. Volokna, No. 4, 14 (2000).

    Google Scholar 

  39. S. E. Tsar’kov, A. O. Malakhov, E. G. Litvinova, and A. V. Volkov, Pet. Chem. 53, 537 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Anokhina.

Additional information

Original Russian Text © T.S. Anokhina, A.A. Yushkin, I.S. Makarov, V.Ya. Ignatenko, A.V. Kostyuk, S.V. Antonov, A.V. Volkov, 2016, published in Membrany i Membrannye Tekhnologii, 2016, Vol. 6, No. 4, pp. 439–448.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anokhina, T.S., Yushkin, A.A., Makarov, I.S. et al. Cellulose composite membranes for nanofiltration of aprotic solvents. Pet. Chem. 56, 1085–1092 (2016). https://doi.org/10.1134/S0965544116110025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116110025

Keywords

Navigation