Skip to main content
Log in

New approach to the characterization of ion-exchange membranes using a set of model parameters

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

An extended three-wire model of the conductivity of ion-exchange membranes is proposed. The model includes a set of three-wire model equations supplemented with coupling equations between three-wire model parameters and the parameters of a microheterogeneous model. To calculate the complete set of parameters for evaluating the structural inhomogeneity of a membrane and calculating its effective electrotransport properties, it is necessary and sufficient to get only the concentration dependence of the specific conductivity of the membrane, which simplifies the characterization procedure. The model was verified based on independent experimental data and the calculations of transport-structural parameters with the use of the microheterogeneous model. It was found that the proposed model approach makes it possible to obtain a reliable combination of structural parameters to characterize the volume fractions of conductive phases and their mutual arrangement in the ion exchange material peculiar to the membrane test sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. S. Spiegler, Trans. Faraday Soc. 54, 1408 (1958).

    Article  CAS  Google Scholar 

  2. A. J. Staverman, Trans. Faraday Soc. 48, 176 (1952).

    Article  CAS  Google Scholar 

  3. O. Kedem and A. Katchalsky, J. Gen. Physiol. 45, 143 (1961).

    Article  CAS  Google Scholar 

  4. P. Meares, Trans. Faraday Soc. 55, 1970 (1959).

    Article  CAS  Google Scholar 

  5. P. Meares, D. G. Dawson, A. H. Sutton, and J. F. Thain, Ber. Bunsenges. Phys. Chem. 71, 765 (1967).

    CAS  Google Scholar 

  6. P. Meares and A. H. Sutton, J. Colloid Interface Sci. 28, 118 (1968).

    Article  CAS  Google Scholar 

  7. W. J. McHardy, P. Meares, A. H. Sutton, and J. F. Thain, J. Colloid Interface Sci. 29, 116 (1969).

    Article  CAS  Google Scholar 

  8. D. G. Dawson and P. Meares, J. Colloid Interface Sci. 33, 117 (1970).

    Article  CAS  Google Scholar 

  9. A. Narebska, S. Koter, and W. Kujawski, Desalination 51, 3 (1984).

    Article  CAS  Google Scholar 

  10. H. Kimisuka and K. Kaibara, J. Colloid Interface Sci. 52, 516 (1975).

    Article  Google Scholar 

  11. S. Koter and C. H. Hamann, J. Non-Equilib. Thermodyn. 15, 319 (1990).

    Article  Google Scholar 

  12. P. Meares, J. Membr. Sci. 8, 295 (1981).

    Article  CAS  Google Scholar 

  13. A. Narebska, R. Wodzki, and K. Erdmann, Angew. Makromol. Chem. 111, 85 (1983).

    Article  CAS  Google Scholar 

  14. A. Narebska, S. Koter, and W. Kujawski, Desalination 51(1), 3 (1984).

    Article  CAS  Google Scholar 

  15. A. Narebska, S. Koter, and W. Kujawski, J. Membr. Sci. 25, 153 (1985).

    Article  Google Scholar 

  16. Membrane and Membrane Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013) [in Russian].

    Google Scholar 

  17. M. Mulder, Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht, 1996).

    Book  Google Scholar 

  18. Timashev, S.F., Physical Chemistry of Membrane Processes (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  19. N. P. Gnusin, V. I. Zabolotskii, V. V. Nikonenko, and A. I. Meshechkov, Zh. Fiz. Khim. 65, 1518 (1980).

    Google Scholar 

  20. V. I. Zabolotsky and V. V. Nikonenko, J. Membr. Sci. 79, 181 (1993).

    Article  CAS  Google Scholar 

  21. V. I. Zabolotskii, N. P. Gnusin, A. I. Meshechkov, and G. A. Dvorkina, Elektrokhimiya 21, 1044 (1985).

    CAS  Google Scholar 

  22. N. P. Gnusin, O. A. Demina, A. I. Meshechkov, and I. Ya. Tur’yan, Elektrokhimiya 21, 1525 (1985).

    CAS  Google Scholar 

  23. N. P. Gnusin, O. A. Demina, N. P. Berezina, and A. I. Meshechkov, Elektrokhimiya 24, 364 (1988).

    CAS  Google Scholar 

  24. N. P. Gnusin, Theor. Found. Chem. Eng. 38, 296 (2004).

    Article  CAS  Google Scholar 

  25. N. P. Gnusin and O. A. Demina, Theor. Found. Chem. Eng. 40, 27 (2006).

    Article  CAS  Google Scholar 

  26. N. P. Gnusin, N. P. Berezina, O. A. Demina, and N. A. Kononenko, Russ. J. Electrochem. 32, 154 (1996).

    CAS  Google Scholar 

  27. C. Larchet, L. Dammak, B. Auclair, et al., New J. Chem. 28, 1260 (2004).

    Article  CAS  Google Scholar 

  28. V. I. Zabolotskii, A. A. Shudrenko, and N. P. Gnusin, Elektrokhimiya 24, 744 (1988).

    CAS  Google Scholar 

  29. V. I. Zabolotskii, A. V. Demin, and O. A. Demina, Russ. J. Electrochem. 47, 327 (2011).

    Article  CAS  Google Scholar 

  30. N. P. Gnusin, O. A. Demina, N. P. Berezina, and N. A. Kononenko, Theor. Found. Chem. Eng. 38, 394 (2004).

    Article  CAS  Google Scholar 

  31. N. P. Gnusin, N. P. Berezina, N. A. Kononenko, and O. A. Dyomina, J. Membr. Sci. 243, 301 (2004).

    Article  CAS  Google Scholar 

  32. N. P. Gnusin, S. B. Parshikov, and O. A. Demina, Russ. J. Electrochem. 34, 1185 (1998).

    CAS  Google Scholar 

  33. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  Google Scholar 

  34. V. K. Shahi, A. P. Murugesh, B. S. Makwana, et al., Indian J. Chem. 39A, 1264 (2000).

    CAS  Google Scholar 

  35. N. P. Gnusin, N. P. Berezina, O. A. Demina, and G. A. Dvorkina, Russ. J. Electrochem. 33, 1246 (1997).

    CAS  Google Scholar 

  36. I. Tugas, G. Pourcelly, and C. Gavach, J. Membr. Sci. 85, 183 (1993).

    Article  CAS  Google Scholar 

  37. O. A. Demina, N. P. Berezina, T. Sata, and A. V. Demin, Russ. J. Electrochem. 38, 896 (2002).

    Article  CAS  Google Scholar 

  38. N. P. Berezina, S. V. Timofeev, A.-L. Rolle, et al., Russ. J. Electrochem. 38, 903 (2002).

    Article  CAS  Google Scholar 

  39. P. V. Vyas, P. Ray, S. K. Adhikary, B. G. Shah, R. Rangarajan, J. Colloid Interface Sci. 257, 127 (2003).

    Article  CAS  Google Scholar 

  40. N. P. Berezina and E. N. Komkova, Colloid J. 65, 1 (2003).

    Article  CAS  Google Scholar 

  41. N. P. Berezina and A. A.-R. Kubaisi, Russ. J. Electrochem. 42, 81 (2006).

    Article  CAS  Google Scholar 

  42. N. P. Berezina, A. A. Kubaisy, S. V. Timofeev, and L. V. Karpenko, J. Solid State Electrochem. 11, 378 (2007).

    Article  CAS  Google Scholar 

  43. L. Chaabane, G. Bulvestre, C. Larchet, et al., J. Membr. Sci. 323, 167 (2008).

    Article  CAS  Google Scholar 

  44. R. Ghalloussi, W. Garcia-Vasquez, L. Chaabane, et al., J. Membr. Sci. 436, 68 (2013).

    Article  CAS  Google Scholar 

  45. O. A. Demina, A. V. Demin, N. P. Gnusin, and V. I. Zabolotskii, Polym. Sci., Ser. A 52, 1270 (2010).

    Article  Google Scholar 

  46. V. I. Zabolotskii, K. A. Lebedev, and A. A. Shudrenko, Elektrokhimiya 25, 913 (1989).

    CAS  Google Scholar 

  47. N. P. Gnusin, N. P. Berezina, N. A. Kononenko, and O. A. Demina, Russ. J. Phys. Chem. 73, 1174 (1999).

    Google Scholar 

  48. N. P. Gnusin and O. P. Ivina, Zh. Fiz. Khim. 65, 2461 (1991).

    CAS  Google Scholar 

  49. V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  50. N. P. Gnusin and V. D. Grebenyuk, Electrochemistry of Granulated Ion Exchangers (Naukova Dumka, Kiev, 1972) [in Russian].

    Google Scholar 

  51. N. P. Gnusin, V. D. Grebenyuk, and M. V. Pevnitskaya, Electrochemistry of Ion Exchangers (Nauka, Novosibirsk, 1972).

    Google Scholar 

  52. N. P. Gnusin, V. D. Grebenyuk, and A. G. Fomin, Elektrokhimiya 2, 479 (1966).

    CAS  Google Scholar 

  53. N. P. Gnusin, V. D. Grebenyuk, and A. G. Fomin, Izv. Sib. Otd. Akad. Nauk SSSR 14(6), 31 (1968).

    Google Scholar 

  54. A. T. Alymova, A. Ya. Shatalov, and V. P. Meleshko, Zh. Fiz. Khim. 45, 1495 (1971).

    CAS  Google Scholar 

  55. V. D. Grebenyuk, M. V. Pevnitskaya, and N. P. Gnusin, Zh. Prikl. Khim. 42, 578 (1969).

    CAS  Google Scholar 

  56. N. P. Gnusin, N. P. Berezina, N. A. Kononenko, et al., Russ. J. Phys. Chem. A 83, 107 (2009).

    Article  CAS  Google Scholar 

  57. N. P. Gnusin, O. A. Demina, and L. A. Annikova, Russ. J. Electrochem. 45, 490 (2009).

    Article  CAS  Google Scholar 

  58. N. P. Berezina, N. P. Gnusin, O. A. Demina, and L. A. Annikova, Russ. J. Electrochem. 45, 1226 (2009).

    Article  CAS  Google Scholar 

  59. O. A. Demina, A. V. Demin, N. P. Gnusin, and V. I. Zabolotskii, Polym. Sci., Ser. A 52, 1270 (2010).

    Article  Google Scholar 

  60. N. P. Berezina, N. A. Kononenko, O. A. Demina, and N. P. Gnusin, Polym. Sci., Ser. A 46, 672 (2004).

    Google Scholar 

  61. H.-G. Haubold, Th. Vad, H. Jungbluth, and P. Hiller, Electrochim. Acta 46, 1559 (2001).

    Article  CAS  Google Scholar 

  62. N. P. Berezina, O. A. Demina, N. P. Gnusin, and S. V. Timofeev, Elektrokhimiya 25, 1467 (1989).

    CAS  Google Scholar 

  63. Ion-Exchnage Membranes, Granulates, and Powders: Catalog (NIITEKhIM, Moscow, 1977), p. 32 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kononenko.

Additional information

Original Russian Text © O.A. Demina, N.A. Kononenko, I.V. Falina, 2014, published in Membrany i Membrannye Tekhnologii, 2014, Vol. 4, No. 2, pp. 84–94.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demina, O.A., Kononenko, N.A. & Falina, I.V. New approach to the characterization of ion-exchange membranes using a set of model parameters. Pet. Chem. 54, 515–525 (2014). https://doi.org/10.1134/S0965544114070032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544114070032

Keywords

Navigation